Hasan Nazarul, Gregg Ronald G
Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville KY 40202.
Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville KY 40202.
eNeuro. 2024 Feb 26;11(3). doi: 10.1523/ENEURO.0120-23.2024.
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to 8 types of depolarizing BCs (DBCs) and 5 types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles. The molecular architecture that underpins this organization is relatively poorly understood. To identify new proteins involved in synapse formation and function we used an unbiased proteomic approach and identified LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2) as a component of the DBC signaling complex. LRFN2 is selectively expressed at cone terminals and co-localizes with PNA, and other DBC signalplex members. In LRFN2 deficient mice, the synaptic markers: LRIT3, ELFN2, mGluR6, TRPM1 and GPR179 are properly localized. Similarly, LRFN2 expression and localization is not dependent on these synaptic proteins. In the absence of LRFN2 the cone-mediated photopic electroretinogram b-wave amplitude is reduced at the brightest flash intensities. These data demonstrate that LRFN2 absence compromises normal synaptic transmission between cones and cone DBCs. Signaling between cone photoreceptors and the downstream bipolar cells is critical to normal vision. Cones synapse with 13 different types of bipolar cells forming an invaginating ribbon synapses with 8 types, and flat synapses with 5 types, to form one of the most complex synapses in the brain. In this report a new protein, LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2), was identified that is expressed at the cone synapse. Using knockout mice we show LRFN2 is required for the normal cone signaling.
在脊椎动物中,明视觉由视锥光感受器介导,视锥光感受器与双极细胞(BCs)和水平细胞(HCs)形成突触。这种视锥突触在功能和解剖结构上都很复杂,在小鼠中与8种去极化双极细胞(DBCs)和5种超极化双极细胞(HBCs)相连。DBCs和HCs细胞的树突与视锥轴突终末形成内陷的带状突触,而HBCs与视锥小足形成扁平突触。支撑这种组织结构的分子结构相对了解较少。为了鉴定参与突触形成和功能的新蛋白质,我们采用了无偏向蛋白质组学方法,并鉴定出富含亮氨酸重复序列和纤连蛋白III结构域的2(LRFN2)作为DBC信号复合物的一个组成部分。LRFN2在视锥终末选择性表达,并与花生凝集素(PNA)及其他DBC信号复合物成员共定位。在LRFN2基因敲除小鼠中,突触标记物:LRIT3、ELFN2、代谢型谷氨酸受体6(mGluR6)、瞬时受体电位阳离子通道M型1(TRPM1)和G蛋白偶联受体179(GPR179)定位正常。同样,LRFN2的表达和定位也不依赖于这些突触蛋白。在缺乏LRFN2的情况下,视锥介导的明视视网膜电图b波振幅在最亮闪光强度时降低。这些数据表明,缺乏LRFN2会损害视锥与视锥DBCs之间的正常突触传递。视锥光感受器与下游双极细胞之间的信号传导对于正常视觉至关重要。视锥与13种不同类型的双极细胞形成突触,其中与8种形成内陷的带状突触,与5种形成扁平突触,从而形成大脑中最复杂的突触之一。在本报告中,鉴定出一种新的蛋白质LRFN2(富含亮氨酸重复序列和纤连蛋白III结构域的2),它在视锥突触处表达。利用基因敲除小鼠,我们表明LRFN2是正常视锥信号传导所必需的。