Suppr超能文献

建立和验证肿瘤浸润免疫细胞模型以预测接受放射治疗的头颈部鳞状细胞癌患者的生存情况。

Developing and validating the model of tumor-infiltrating immune cell to predict survival in patients receiving radiation therapy for head and neck squamous cell carcinoma.

作者信息

Xu Ting, Xu Mengting, Xu Yiying, Cai Xiaojun, Brenner Michael J, Twigg Joshua, Fei Zhaodong, Chen Chuanben

机构信息

Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

Transl Cancer Res. 2024 Jan 31;13(1):394-412. doi: 10.21037/tcr-23-2345. Epub 2024 Jan 29.

Abstract

BACKGROUND

Radiotherapy (RT) is a mainstay of head and neck squamous cell carcinoma (HNSCC) treatment. Due to the influence of RT on tumor cells and immune/stromal cells in microenvironment, some studies suggest that immunologic landscape could shape treatment response. To better predict the survival based on genomic data, we developed a prognostic model using tumor-infiltrating immune cell (TIIC) signature to predict survival in patients undergoing RT for HNSCC.

METHODS

Gene expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Data from HNSCC patients undergoing RT were extracted for analysis. TIICs prevalence in HNSCC patients was quantified by gene set variation analysis (GSVA) algorithm. TIICs and post-RT survival were analyzed using univariate Cox regression analysis and used to construct and validate a tumor-infiltrating cells score (TICS).

RESULTS

Five of 26 immune cells were significantly associated with HNSCC prognosis in the training cohort (all P<0.05). Kaplan-Meier (KM) survival curves showed that patients in the high TICS group had better survival outcomes (log-rank test, P<0.05). Univariate analyses demonstrated that the TICS had independent prognostic predictive ability for RT outcomes (P<0.05). Patients with high TICS scores showed significantly higher expression of immune-related genes. Functional pathway analyses further showed that the TICS was significantly related to immune-related biological process. Stratified analyses supported integrating TICS and tumor mutation burden (TMB) into individualized treatment planning, as an adjunct to classification by clinical stage and human papillomavirus (HPV) infection.

CONCLUSIONS

The TICS model supports a personalized medicine approach to RT for HNSCC. Increased prevalence of TIIC within the tumor microenvironment (TME) confers a better prognosis for patients undergoing treatment for HNSCC.

摘要

背景

放射治疗(RT)是头颈部鳞状细胞癌(HNSCC)治疗的主要手段。由于放疗对肿瘤细胞以及微环境中免疫/基质细胞的影响,一些研究表明免疫格局可能会影响治疗反应。为了基于基因组数据更好地预测生存情况,我们开发了一种预后模型,利用肿瘤浸润免疫细胞(TIIC)特征来预测接受放疗的HNSCC患者的生存情况。

方法

从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)下载基因表达数据和临床信息。提取接受放疗的HNSCC患者的数据进行分析。通过基因集变异分析(GSVA)算法量化HNSCC患者中TIIC的患病率。使用单变量Cox回归分析TIIC与放疗后生存情况,并用于构建和验证肿瘤浸润细胞评分(TICS)。

结果

在训练队列中,26种免疫细胞中的5种与HNSCC预后显著相关(所有P<0.05)。Kaplan-Meier(KM)生存曲线显示,高TICS组患者的生存结果更好(对数秩检验,P<0.05)。单变量分析表明,TICS对放疗结果具有独立的预后预测能力(P<0.05)。高TICS评分的患者免疫相关基因表达显著更高。功能通路分析进一步表明,TICS与免疫相关生物学过程显著相关。分层分析支持将TICS和肿瘤突变负荷(TMB)纳入个体化治疗计划,作为临床分期和人乳头瘤病毒(HPV)感染分类的辅助手段。

结论

TICS模型支持对HNSCC进行放疗的个性化医疗方法。肿瘤微环境(TME)中TIIC患病率的增加赋予接受HNSCC治疗的患者更好的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b8a/10894341/cabbe12cc151/tcr-13-01-394-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验