Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore.
Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.
Adv Sci (Weinh). 2024 May;11(20):e2302113. doi: 10.1002/advs.202302113. Epub 2024 Feb 27.
While the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut-like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome-on-a-Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut-microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco-2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro-tumorigenic signaling activations. Pre-treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF-mediated gut pathogenesis, preserving the healthy state of the µGut through competition-mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe-induced pathogenesis and microbe-based therapeutic development.
虽然人类肠道微生物群对肠道健康和疾病有重大影响,但由于缺乏能够准确复制肠道样环境并能够密切观察微生物组成与肠道之间因果和机制关系的合适体外模型系统,对肠道微生物的作用、相互作用以及肠道微生物对人类肠道健康各个方面的集体影响的理解受到限制。在这项研究中,我们提出了一种具有强大成像能力和可扩展性的肠道微生物组芯片 (GMoC),提供了生理相关的动态肠道微生物界面。该芯片具有可重复的源自 Caco-2 细胞的 3D 分层肠道上皮 (µGut),模拟关键的肠道结构、功能和细胞复杂性,为肠道内的微生物提供了生理相关的肠道环境。将致癌细菌,产肠毒素脆弱拟杆菌 (ETBF) 纳入 GMoC 中,能够观察到 ETBF 的致病行为,导致 µGut 破坏和促肿瘤信号激活。用有益的肠道微生物乳杆菌属对 µGut 进行预处理,可有效防止 ETBF 介导的肠道发病机制,通过竞争介导的定植抗性来维持 µGut 的健康状态。GMoC 有望成为探索肠道微生物在微生物诱导的发病机制和基于微生物的治疗开发中未知作用的有价值工具。