Suppr超能文献

一种基于脑电图的轻度认知障碍诊断的张量分解方案。

A tensor decomposition scheme for EEG-based diagnosis of mild cognitive impairment.

作者信息

Faghfouri Alireza, Shalchyan Vahid, Toor Hamza Ghazanfar, Amjad Imran, Niazi Imran Khan

机构信息

Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

Riphah International University, Islamabad, Pakistan.

出版信息

Heliyon. 2024 Feb 15;10(4):e26365. doi: 10.1016/j.heliyon.2024.e26365. eCollection 2024 Feb 29.

Abstract

Mild Cognitive Impairment (MCI) is the primary stage of acute Alzheimer's disease, and early detection is crucial for the person and those around him. It is difficult to recognize since this mild stage does not have clear clinical signs, and its symptoms are between normal aging and severe dementia. Here, we propose a tensor decomposition-based scheme for automatically diagnosing MCI using Electroencephalogram (EEG) signals. A new projection is proposed, which preserves the spatial information of the electrodes to construct a data tensor. Then, using parallel factor analysis (PARAFAC) tensor decomposition, the features are extracted, and a support vector machine (SVM) is used to discriminate MCI from normal subjects. The proposed scheme was tested on two different datasets. The results showed that the tensor-based method outperformed conventional methods in diagnosing MCI with an average classification accuracy of 93.96% and 78.65% for the first and second datasets, respectively. Therefore, it seems that maintaining the spatial topology of the signals plays a vital role in the processing of EEG signals.

摘要

轻度认知障碍(MCI)是急性阿尔茨海默病的初级阶段,早期检测对患者及其周围的人至关重要。由于这个轻度阶段没有明显的临床症状,且其症状介于正常衰老和严重痴呆之间,因此很难识别。在此,我们提出一种基于张量分解的方案,用于使用脑电图(EEG)信号自动诊断MCI。提出了一种新的投影方法,该方法保留电极的空间信息以构建数据张量。然后,使用平行因子分析(PARAFAC)张量分解提取特征,并使用支持向量机(SVM)将MCI与正常受试者区分开来。该方案在两个不同的数据集上进行了测试。结果表明,基于张量的方法在诊断MCI方面优于传统方法,第一个和第二个数据集的平均分类准确率分别为93.96%和78.65%。因此,似乎保持信号的空间拓扑结构在EEG信号处理中起着至关重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fd/10901001/46946bb56747/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验