Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA.
Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA.
Front Biosci (Landmark Ed). 2024 Feb 21;29(2):75. doi: 10.31083/j.fbl2902075.
Cerebral Cavernous Malformations (CCMs) are brain vascular abnormalities associated with an increased risk of hemorrhagic strokes. Familial CCMs result from autosomal dominant inheritance involving three genes: (), (), and (). CCM1 and CCM3 form the CCM Signal Complex (CSC) by binding to CCM2. Both CCM1 and CCM2 exhibit cellular heterogeneity through multiple alternative spliced isoforms, where exons from the same gene combine in diverse ways, leading to varied mRNA transcripts. Additionally, both demonstrate nucleocytoplasmic shuttling between the nucleus and cytoplasm, suggesting their potential role in gene expression regulation as transcription factors (TFs). Due to the accumulated data indicating the cellular localization of CSC proteins in the nucleus and their interaction with progesterone receptors, which serve dual roles as both cellular signaling components and TFs, a question has arisen regarding whether CCMs could also function in both capacities like progesterone receptors.
To investigate this potential, we employed our proprietary deep-learning (DL)-based algorithm, specifically utilizing a biased-Support Vector Machine (SVM) model, to explore the plausible cellular function of any of the CSC proteins, particularly focusing on gene isoforms with nucleocytoplasmic shuttling, acting as TFs in gene expression regulation.
Through a comparative DL-based predictive analysis, we have effectively discerned a collective of 11 isoforms across all CCM proteins (CCM1-3). Additionally, we have substantiated the TF functionality of 8 isoforms derived from CCM1 and CCM2 proteins, marking the inaugural identification of CCM isoforms in the role of TFs.
This groundbreaking discovery directly challenges the prevailing paradigm, which predominantly emphasizes the involvement of CSC solely in endothelial cellular functions amid various potential cellular signal cascades during angiogenesis.
脑海绵状血管畸形(CCMs)是一种与出血性中风风险增加相关的脑血管异常。家族性 CCM 是由常染色体显性遗传引起的,涉及三个基因:()、()和()。CCM1 和 CCM3 通过与 CCM2 结合形成 CCM 信号复合物(CSC)。CCM1 和 CCM2 都通过多个选择性剪接异构体表现出细胞异质性,其中同一基因的外显子以不同的方式组合,导致不同的 mRNA 转录本。此外,两者都在核和细胞质之间进行核质穿梭,表明它们作为转录因子(TFs)在基因表达调控中的潜在作用。由于大量数据表明 CSC 蛋白在细胞核中的细胞定位及其与孕激素受体的相互作用,孕激素受体既是细胞信号成分又是 TFs,因此人们提出了一个问题,即 CCM 是否也可以像孕激素受体一样具有双重功能。
为了研究这种可能性,我们使用了我们专有的深度学习(DL)算法,特别是利用有偏差的支持向量机(SVM)模型,来探索 CSC 蛋白的任何一种可能的细胞功能,特别是关注具有核质穿梭功能的基因异构体,作为基因表达调控中的 TF。
通过基于 DL 的比较预测分析,我们有效地识别出了所有 CCM 蛋白(CCM1-3)中的 11 个异构体。此外,我们还证实了来自 CCM1 和 CCM2 蛋白的 8 个异构体的 TF 功能,这标志着首次鉴定出 CCM 异构体作为 TFs 的作用。
这一开创性的发现直接挑战了流行的范式,该范式主要强调 CSC 仅在血管生成过程中的各种潜在细胞信号级联中参与内皮细胞功能。