Khamaru Krishnendu, Pal Uttam, Shee Subhankar, Lo Rabindranath, Seal Kaushik, Ghosh Prasanta, Maiti Nakul Chandra, Banerji Biswadip
CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
J Am Chem Soc. 2024 Mar 13;146(10):6912-6925. doi: 10.1021/jacs.3c14366. Epub 2024 Feb 29.
Most oxidation processes in common organic synthesis and chemical biology require transition metal catalysts or metalloenzymes. Herein, we report a detailed mechanistic study of a metal-free oxygen (O) activation protocol on benzylamine/alcohols using simple quaternary alkylammonium-based ionic liquids to produce products such as amide, aldehyde, imine, and in some cases, even aromatized products. NMR and various control experiments established the product formation and reaction mechanism, which involved the conversion of molecular oxygen into a hydroperoxyl radical via a proton-coupled electron transfer process. Detection of hydrogen peroxide in the reaction medium using colorimetric analysis supported the proposed mechanism of oxygen activation. Furthermore, first-principles calculations using density functional theory (DFT) revealed that reaction coordinates and transition state spin densities have a unique spin conversion of triplet oxygen leading to formation of singlet products via a minimum energy crossing point. In addition to DFT, domain-based local pair natural orbital coupled cluster, (DLPNO-CCSD(T)), and complete active space self-consistent field, CASSCF(20,14) methods complemented the above findings. Partial density of states analysis showed stabilization of π* orbital of oxygen in the presence of ionic liquid, making it susceptible to hydrogen abstraction in a mild, metal-free condition. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis of reactant and ionic liquids clearly showed the absence of any significant transition metal contamination. The current results described the origin of O activation within the context of molecular orbital (MO) theory and opened up a new avenue for the use of ionic liquids as inexpensive, multifunctional and high-performance alternative to metal-based catalysts for O activation.
大多数常见有机合成和化学生物学中的氧化过程都需要过渡金属催化剂或金属酶。在此,我们报告了一项详细的机理研究,该研究涉及使用简单的季铵基离子液体对苄胺/醇进行无金属氧(O)活化方案,以生产酰胺、醛、亚胺等产物,在某些情况下甚至还能生成芳构化产物。核磁共振(NMR)和各种对照实验确定了产物的形成和反应机理,该机理涉及通过质子耦合电子转移过程将分子氧转化为氢过氧自由基。使用比色分析检测反应介质中的过氧化氢支持了所提出的氧活化机理。此外,使用密度泛函理论(DFT)进行的第一性原理计算表明,反应坐标和过渡态自旋密度具有独特的三线态氧自旋转换,通过最小能量交叉点导致单线态产物的形成。除了DFT之外,基于域的局部对自然轨道耦合簇(DLPNO - CCSD(T))和完全活性空间自洽场(CASSCF(20,14))方法补充了上述发现。态密度部分分析表明,在离子液体存在下氧的π*轨道稳定,使其在温和的无金属条件下易于发生氢提取。对反应物和离子液体的电感耦合等离子体原子发射光谱(ICP - AES)分析清楚地表明不存在任何明显的过渡金属污染。当前结果在分子轨道(MO)理论的背景下描述了氧活化的起源,并开辟了一条新途径,可将离子液体用作廉价、多功能且高性能的替代金属基催化剂用于氧活化。