Sharma Himanshu, Jespersen Nathan, Ehrenbolger Kai, Carlson Lars-Anders, Barandun Jonas
Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
PLoS Biol. 2024 Feb 29;22(2):e3002533. doi: 10.1371/journal.pbio.3002533. eCollection 2024 Feb.
During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.
在宿主细胞入侵过程中,微孢子虫孢子通过一种称为极管的细而中空的超结构转运其全部细胞质内容物。为实现这一过程,极管从环境孢子内紧凑的弹簧状状态转变为能够进行远距离孢子质输送的长针状管。极管组成部分的独特机械性能使得其能够从紧凑状态迅速转变为伸展状态,并支持快速的货物转运过程。促成这一超快过程的分子和结构因素以及货物输送过程中的结构变化尚不清楚。在此,我们利用光学显微镜和原位冷冻电子断层扫描技术来观察内寄生变形孢极管的多种超微结构状态,从而评估其萌发动力学并表征其潜在的形态转变。我们描述了一种充满货物的状态,其中微孢子虫核糖体呈现独特的有序排列,沿细管壁聚集;以及一种转运后为空的状态,其直径减小但管壁更厚。结合对内源亲和纯化极管的蛋白质组分析,我们的工作提供了关于微孢子虫感染机制的全面数据,并揭示了核糖体调控和运输的新方面。