Suppr超能文献

用于医学图像分割的分割模型:当前应用与未来方向。

Segment anything model for medical image segmentation: Current applications and future directions.

机构信息

School of Data Science, Fudan University, Shanghai, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Comput Biol Med. 2024 Mar;171:108238. doi: 10.1016/j.compbiomed.2024.108238. Epub 2024 Feb 27.

Abstract

Due to the inherent flexibility of prompting, foundation models have emerged as the predominant force in the fields of natural language processing and computer vision. The recent introduction of the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation, thereby introducing a plethora of previously unexplored capabilities. However, the viability of its application to medical image segmentation remains uncertain, given the substantial distinctions between natural and medical images. In this work, we provide a comprehensive overview of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks, encompassing both empirical benchmarking and methodological adaptations. Additionally, we explore potential avenues for future research directions in SAM's role within medical image segmentation. While direct application of SAM to medical image segmentation does not yield satisfactory performance on multi-modal and multi-target medical datasets so far, numerous insights gleaned from these efforts serve as valuable guidance for shaping the trajectory of foundational models in the realm of medical image analysis. To support ongoing research endeavors, we maintain an active repository that contains an up-to-date paper list and a succinct summary of open-source projects at https://github.com/YichiZhang98/SAM4MIS.

摘要

由于提示具有固有的灵活性,基础模型已成为自然语言处理和计算机视觉领域的主要力量。最近引入的 Segment Anything Model (SAM) 将提示驱动范式扩展到图像分割领域,从而引入了大量以前未探索的功能。然而,鉴于自然图像和医学图像之间存在很大的区别,其在医学图像分割中的应用的可行性仍然不确定。在这项工作中,我们提供了对最近旨在将 SAM 的功效扩展到医学图像分割任务的努力的全面概述,包括实证基准测试和方法学适应。此外,我们探讨了 SAM 在医学图像分割中的作用的未来研究方向的潜在途径。虽然迄今为止,直接将 SAM 应用于多模态和多目标医学数据集并不能产生令人满意的性能,但从这些努力中获得的许多见解为塑造医学图像分析领域基础模型的发展轨迹提供了有价值的指导。为了支持正在进行的研究工作,我们在 https://github.com/YichiZhang98/SAM4MIS 上维护了一个活跃的存储库,其中包含最新的论文列表和开源项目的简明摘要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验