Suppr超能文献

基于人群的前瞻性队列研究:视觉处理速度及其与未来痴呆发展的关系。EPIC-Norfolk

Visual processing speed and its association with future dementia development in a population-based prospective cohort: EPIC-Norfolk.

机构信息

School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.

Department of Public Health, University of Cambridge, Cambridge, Cambridgeshire, CB2 1PZ, UK.

出版信息

Sci Rep. 2024 Feb 29;14(1):5016. doi: 10.1038/s41598-024-55637-x.

Abstract

Visual processing deficits have frequently been reported when studied in individuals with dementia, which suggests their potential utility in supporting dementia screening. The study uses EPIC-Norfolk Prospective Population Cohort Study data (n = 8623) to investigate the role of visual processing speed assessed by the Visual Sensitivity Test (VST) in identifying the risk of future dementia using Cox regression analyses. Individuals with lower scores on the simple and complex VST had a higher probability of a future dementia diagnosis HR1.39 (95% CI 1.12, 1.67, P < 0.01) and HR 1.56 (95% CI 1.27, 1.90, P < 0.01), respectively. Although other more commonly used cognitive dementia screening tests were better predictors of future dementia risk (HR 3.45 for HVLT and HR 2.66, for SF-EMSE), the complex VST showed greater sensitivity to variables frequently associated with dementia risk. Reduced complex visual processing speed is significantly associated with a high likelihood of a future dementia diagnosis and risk/protective factors in this cohort. Combining visual processing tests with other neuropsychological tests could improve the identification of future dementia risk.

摘要

当研究痴呆症患者时,经常会发现视觉处理缺陷,这表明它们在支持痴呆症筛查方面具有潜在的效用。该研究使用 EPIC-Norfolk 前瞻性人群队列研究数据(n=8623),通过 Cox 回归分析,调查了视觉敏感度测试(VST)评估的视觉处理速度在识别未来痴呆风险中的作用。在简单和复杂 VST 上得分较低的个体,未来痴呆诊断的可能性更高 HR1.39(95%CI 1.12,1.67,P<0.01)和 HR1.56(95%CI 1.27,1.90,P<0.01)。尽管其他更常用的认知痴呆症筛查测试是未来痴呆风险的更好预测因素(HVLT 的 HR3.45 和 SF-EMSE 的 HR2.66),但复杂 VST 对与痴呆症风险相关的变量具有更高的敏感性。复杂视觉处理速度降低与未来痴呆诊断的高可能性以及该队列中的风险/保护因素显著相关。将视觉处理测试与其他神经心理学测试相结合,可能会提高对未来痴呆风险的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f0e/10904745/14958fa81a2e/41598_2024_55637_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验