Allen Andrea J, Moore Cristopher, Hébert-Dufresne Laurent
Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA.
Applied Clinical Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
Phys Rev Lett. 2024 Feb 16;132(7):077402. doi: 10.1103/PhysRevLett.132.077402.
Studies of dynamics on temporal networks often represent the network as a series of "snapshots," static networks active for short durations of time. We argue that successive snapshots can be aggregated if doing so has little effect on the overlying dynamics. We propose a method to compress network chronologies by progressively combining pairs of snapshots whose matrix commutators have the smallest dynamical effect. We apply this method to epidemic modeling on real contact tracing data and find that it allows for significant compression while remaining faithful to the epidemic dynamics.
对时间网络动态的研究通常将网络表示为一系列“快照”,即短时间内活跃的静态网络。我们认为,如果连续的快照对上层动态影响不大,那么就可以将它们聚合起来。我们提出了一种方法,通过逐步组合矩阵对易子动态影响最小的快照对来压缩网络时间序列。我们将此方法应用于基于实际接触者追踪数据的流行病建模,发现它在忠实于流行病动态的同时,能够实现显著的压缩。