Champalimaud Research, Centre for the Unknown, Portugal.
Curr Opin Neurobiol. 2024 Apr;85:102855. doi: 10.1016/j.conb.2024.102855. Epub 2024 Feb 29.
The entorhinal cortex and hippocampus form a recurrent network that informs many cognitive processes, including memory, planning, navigation, and imagination. Neural recordings from these regions reveal spatially organized population codes corresponding to external environments and abstract spaces. Aligning the former cognitive functionalities with the latter neural phenomena is a central challenge in understanding the entorhinal-hippocampal circuit (EHC). Disparate experiments demonstrate a surprising level of complexity and apparent disorder in the intricate spatiotemporal dynamics of sequential non-local hippocampal reactivations, which occur particularly, though not exclusively, during immobile pauses and rest. We review these phenomena with a particular focus on their apparent lack of physical simulative realism. These observations are then integrated within a theoretical framework and proposed neural circuit mechanisms that normatively characterize this neural complexity by conceiving different regimes of hippocampal microdynamics as neuromarkers of diverse cognitive computations.
内嗅皮层和海马体形成一个反复的网络,为包括记忆、规划、导航和想象在内的许多认知过程提供信息。这些区域的神经记录显示出与外部环境和抽象空间相对应的空间组织的群体代码。将前者的认知功能与后者的神经现象联系起来,是理解内嗅-海马回路 (EHC) 的核心挑战。不同的实验表明,在顺序的非局部海马体再激活的复杂时空动力学中存在着令人惊讶的复杂性和明显的无序性,这种现象尤其但并非排他性地发生在静止和休息期间。我们特别关注这些现象,因为它们明显缺乏物理模拟的现实性。然后,这些观察结果被整合到一个理论框架和提出的神经回路机制中,这些机制通过将海马体微动力学的不同状态规范地描述为不同认知计算的神经标志物,来规范地描述这种神经复杂性。