Suppr超能文献

期望最大化伪标签

Expectation maximisation pseudo labels.

作者信息

Xu Moucheng, Zhou Yukun, Jin Chen, de Groot Marius, Alexander Daniel C, Oxtoby Neil P, Hu Yipeng, Jacob Joseph

机构信息

UCL Centre for Medical Image Computing (CMIC), University College London, 90 High Holborn, London, WC1V 6LJ, UK; UCL Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK; Satsuma Lab, University College Londo, 90 High Holborn, WC1V 6LJ, UK.

UCL Centre for Medical Image Computing (CMIC), University College London, 90 High Holborn, London, WC1V 6LJ, UK; UCL Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

Med Image Anal. 2024 May;94:103125. doi: 10.1016/j.media.2024.103125. Epub 2024 Feb 27.

Abstract

In this paper, we study pseudo-labelling. Pseudo-labelling employs raw inferences on unlabelled data as pseudo-labels for self-training. We elucidate the empirical successes of pseudo-labelling by establishing a link between this technique and the Expectation Maximisation algorithm. Through this, we realise that the original pseudo-labelling serves as an empirical estimation of its more comprehensive underlying formulation. Following this insight, we present a full generalisation of pseudo-labels under Bayes' theorem, termed Bayesian Pseudo Labels. Subsequently, we introduce a variational approach to generate these Bayesian Pseudo Labels, involving the learning of a threshold to automatically select high-quality pseudo labels. In the remainder of the paper, we showcase the applications of pseudo-labelling and its generalised form, Bayesian Pseudo-Labelling, in the semi-supervised segmentation of medical images. Specifically, we focus on: (1) 3D binary segmentation of lung vessels from CT volumes; (2) 2D multi-class segmentation of brain tumours from MRI volumes; (3) 3D binary segmentation of whole brain tumours from MRI volumes; and (4) 3D binary segmentation of prostate from MRI volumes. We further demonstrate that pseudo-labels can enhance the robustness of the learned representations. The code is released in the following GitHub repository: https://github.com/moucheng2017/EMSSL.

摘要

在本文中,我们研究伪标签。伪标签将对未标记数据的原始推断用作自我训练的伪标签。我们通过建立这种技术与期望最大化算法之间的联系,阐明了伪标签在经验上的成功之处。通过这一点,我们认识到原始的伪标签是其更全面的潜在公式的一种经验估计。基于这一见解,我们在贝叶斯定理下提出了伪标签的完全泛化形式,称为贝叶斯伪标签。随后,我们引入了一种变分方法来生成这些贝叶斯伪标签,包括学习一个阈值以自动选择高质量的伪标签。在本文的其余部分,我们展示了伪标签及其泛化形式贝叶斯伪标签在医学图像半监督分割中的应用。具体而言,我们关注:(1)从CT体积数据中对肺血管进行3D二值分割;(2)从MRI体积数据中对脑肿瘤进行2D多类分割;(3)从MRI体积数据中对全脑肿瘤进行3D二值分割;以及(4)从MRI体积数据中对前列腺进行3D二值分割。我们进一步证明伪标签可以增强学习到的表示的鲁棒性。代码发布在以下GitHub仓库中:https://github.com/moucheng2017/EMSSL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验