Suppr超能文献

Istore:一个关于创新统计方法的项目,旨在改善有限人群中的罕见病临床试验。

Istore: a project on innovative statistical methodologies to improve rare diseases clinical trials in limited populations.

作者信息

Schoenen Stefanie, Verbeeck Johan, Koletzko Lukas, Brambilla Isabella, Kuchenbuch Mathieu, Dirani Maya, Zimmermann Georg, Dette Holger, Hilgers Ralf-Dieter, Molenberghs Geert, Nabbout Rima

机构信息

Institute of Medical Statistics, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany.

I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium.

出版信息

Orphanet J Rare Dis. 2024 Mar 2;19(1):96. doi: 10.1186/s13023-024-03103-2.

Abstract

BACKGROUND

The conduct of rare disease clinical trials is still hampered by methodological problems. The number of patients suffering from a rare condition is variable, but may be very small and unfortunately statistical problems for small and finite populations have received less consideration. This paper describes the outline of the iSTORE project, its ambitions, and its methodological approaches.

METHODS

In very small populations, methodological challenges exacerbate. iSTORE's ambition is to develop a comprehensive perspective on natural history course modelling through multiple endpoint methodologies, subgroup similarity identification, and improving level of evidence.

RESULTS

The methodological approaches cover methods for sound scientific modeling of natural history course data, showing similarity between subgroups, defining, and analyzing multiple endpoints and quantifying the level of evidence in multiple endpoint trials that are often hampered by bias.

CONCLUSION

Through its expected results, iSTORE will contribute to the rare diseases research field by providing an approach to better inform about and thus being able to plan a clinical trial. The methodological derivations can be synchronized and transferability will be outlined.

摘要

背景

罕见病临床试验的开展仍受到方法学问题的阻碍。患罕见病的患者数量各不相同,但可能非常少,不幸的是,针对小的有限总体的统计学问题较少受到关注。本文描述了iSTORE项目的概况、目标及其方法学途径。

方法

在非常小的总体中,方法学挑战会加剧。iSTORE的目标是通过多终点方法、亚组相似性识别以及提高证据水平,对自然病史建模形成全面的认识。

结果

方法学途径涵盖对自然病史数据进行合理科学建模的方法,显示亚组间的相似性,定义和分析多终点,并量化多终点试验中常受偏倚影响的证据水平。

结论

通过其预期结果,iSTORE将为罕见病研究领域做出贡献,提供一种更好地提供信息从而能够规划临床试验的方法。将概述方法学推导的同步性和可转移性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b83c/10909280/0b1a033c8938/13023_2024_3103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验