Guo Shuai, Li Zongheng, Zhou Ruilong, Feng Jie, Huang Lin, Ren Bin, Zhu Jiaoyang, Huang Ya, Wu Guochao, Cai Haobin, Zhang Qianqian, Ke Yushen, Guan Tianwang, Chen Peier, Xu Yikai, Yan Chenggong, Ou Caiwen, Shen Zheyu
School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China.
The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China.
Small. 2024 Jul;20(29):e2309842. doi: 10.1002/smll.202309842. Epub 2024 Mar 3.
Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.
三阴性乳腺癌(TNBC)细胞对氧气和葡萄糖有很高的需求,以支持其生长和扩散,从而塑造肿瘤微环境(TME),这种微环境可因缺氧导致免疫系统减弱,并增加转移风险。为了打破这种恶性循环并提高癌症治疗效果,提出了一种将铁死亡、免疫抑制逆转和二硫化物诱导细胞死亡协同作用的策略。成功开发了一种智能纳米药物GOx-IA@HMON@IO来实现这一策略。铁释放行为表明HMON对谷胱甘肽(GSH)有响应性降解。硫酸钛测定、电子自旋共振(ESR)光谱、5,5'-二硫代双(2-硝基苯甲酸)(DTNB)测定和T加权磁共振成像(MRI)的结果证明了基于智能铁原子(IA)的GOx-IA@HMON@IO级联反应机制,可产生强大的活性氧(ROS)。细胞和小鼠实验结果强化了GOx-IA@HMON@IO引发的铁死亡、免疫抑制逆转和二硫化物诱导细胞死亡的协同机制,具体步骤如下:1)通过二硫化物诱导细胞死亡消耗谷胱甘肽过氧化物酶4(GPX4);2)基于IA的级联反应;3)肿瘤缺氧逆转;4)免疫抑制逆转;5)通过免疫疗法消耗GPX4。基于铁死亡、免疫抑制逆转和二硫化物诱导细胞死亡的协同机制,智能纳米药物GOx-IA@HMON@IO可用于MRI引导的肿瘤治疗,具有优异的生物相容性和安全性。