Suppr超能文献

用于颗粒物浓度预测的深度学习架构:综述

Deep-learning architecture for PM concentration prediction: A review.

作者信息

Zhou Shiyun, Wang Wei, Zhu Long, Qiao Qi, Kang Yulin

机构信息

Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Environ Sci Ecotechnol. 2024 Feb 17;21:100400. doi: 10.1016/j.ese.2024.100400. eCollection 2024 Sep.

Abstract

Accurately predicting the concentration of fine particulate matter (PM) is crucial for evaluating air pollution levels and public exposure. Recent advancements have seen a significant rise in using deep learning (DL) models for forecasting PM concentrations. Nonetheless, there is a lack of unified and standardized frameworks for assessing the performance of DL-based PM prediction models. Here we extensively reviewed those DL-based hybrid models for forecasting PM levels according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We examined the similarities and differences among various DL models in predicting PM by comparing their complexity and effectiveness. We categorized PM DL methodologies into seven types based on performance and application conditions, including four types of DL-based models and three types of hybrid learning models. Our research indicates that established deep learning architectures are commonly used and respected for their efficiency. However, many of these models often fall short in terms of innovation and interpretability. Conversely, models hybrid with traditional approaches, like deterministic and statistical models, exhibit high interpretability but compromise on accuracy and speed. Besides, hybrid DL models, representing the pinnacle of innovation among the studied models, encounter issues with interpretability. We introduce a novel three-dimensional evaluation framework, i.e., Dataset-Method-Experiment Standard (DMES) to unify and standardize the evaluation for PM predictions using DL models. This review provides a framework for future evaluations of DL-based models, which could inspire researchers to standardize DL model usage in PM prediction and improve the quality of related studies.

摘要

准确预测细颗粒物(PM)的浓度对于评估空气污染水平和公众暴露情况至关重要。近年来,使用深度学习(DL)模型预测PM浓度取得了显著进展。然而,目前缺乏统一和标准化的框架来评估基于DL的PM预测模型的性能。在此,我们根据系统评价和Meta分析的首选报告项目(PRISMA)指南,对那些基于DL的混合模型进行了广泛综述,以预测PM水平。我们通过比较各种DL模型在预测PM时的复杂性和有效性,研究了它们之间的异同。我们根据性能和应用条件将PM DL方法分为七种类型,包括四种基于DL的模型和三种混合学习模型。我们的研究表明,成熟的深度学习架构因其效率而被广泛使用和认可。然而,这些模型中的许多在创新性和可解释性方面往往存在不足。相反,与确定性和统计模型等传统方法相结合的模型具有较高的可解释性,但在准确性和速度方面有所妥协。此外,混合DL模型作为研究模型中创新的巅峰,在可解释性方面存在问题。我们引入了一种新颖三维评估框架,即数据集 - 方法 - 实验标准(DMES),以统一和标准化使用DL模型进行PM预测的评估。本综述为未来基于DL的模型评估提供了一个框架,这可能会激励研究人员在PM预测中规范DL模型的使用,并提高相关研究的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d3/10910069/ff0241d17da4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验