Suppr超能文献

NesTD-Net:受NESTA启发的具有双路径去块结构的深度展开网络用于图像压缩感知

NesTD-Net: Deep NESTA-Inspired Unfolding Network With Dual-Path Deblocking Structure for Image Compressive Sensing.

作者信息

Gan Hongping, Guo Zhen, Liu Feng

出版信息

IEEE Trans Image Process. 2024;33:1923-1937. doi: 10.1109/TIP.2024.3371351. Epub 2024 Mar 14.

Abstract

Deep compressive sensing (CS) has become a prevalent technique for image acquisition and reconstruction. However, existing deep learning (DL)-based CS methods often encounter challenges such as block artifacts and information loss during iterative reconstruction, particularly at low sampling rates, resulting in a reduction of reconstructed details. To address these issues, we propose NesTD-Net, an unfolding-based architecture inspired by the NESTA algorithm, designed for image CS. NesTD-Net integrates DL modules into NESTA iterations, forming a deep network that continuously iterates to minimize the l -norm CS problem, ensuring high-quality image CS. Utilizing a learned sampling matrix for measurements and an initialization module for initial estimate, NesTD-Net then introduces Iteration Sub-Modules derived from the NESTA algorithm (i.e., Y , Z , and X ) during reconstruction stages to iteratively solve the l -norm CS reconstruction. Additionally, NesTD-Net incorporates a Dual-Path Deblocking Structure (DPDS) to facilitate feature information flow and mitigate block artifacts, enhancing image detail reconstruction. Furthermore, DPDS exhibits remarkable versatility and demonstrates seamless integration with other unfolding-based methods, offering the potential to enhance their performance in image reconstruction. Experimental results demonstrate that our proposed NesTD-Net achieves better performance compared to other state-of-the-art methods in terms of image quality metrics such as SSIM and PSNR, as well as visual perception on several public benchmark datasets.

摘要

深度压缩感知(CS)已成为图像采集和重建的一种普遍技术。然而,现有的基于深度学习(DL)的CS方法在迭代重建过程中经常遇到诸如块状伪影和信息丢失等挑战,尤其是在低采样率下,导致重建细节减少。为了解决这些问题,我们提出了NesTD-Net,这是一种受NESTA算法启发的基于展开的架构,专为图像CS设计。NesTD-Net将DL模块集成到NESTA迭代中,形成一个深度网络,不断迭代以最小化l -范数CS问题,确保高质量的图像CS。NesTD-Net利用一个学习得到的采样矩阵进行测量,并使用一个初始化模块进行初始估计,然后在重建阶段引入源自NESTA算法的迭代子模块(即Y、Z和X)来迭代求解l -范数CS重建。此外,NesTD-Net还引入了一种双路径去块结构(DPDS)来促进特征信息流并减轻块状伪影,增强图像细节重建。此外,DPDS具有显著的通用性,并展示了与其他基于展开的方法的无缝集成,为提高它们在图像重建中的性能提供了潜力。实验结果表明,我们提出的NesTD-Net在诸如结构相似性指数测量(SSIM)和峰值信噪比(PSNR)等图像质量指标以及在几个公共基准数据集上的视觉感知方面,与其他现有最先进方法相比具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验