Department of Radiology, Duke University Medical Center, Box 2731, Durham, NC, 27710, USA.
Sci Rep. 2024 Mar 5;14(1):5383. doi: 10.1038/s41598-024-54048-2.
Breast density, or the amount of fibroglandular tissue (FGT) relative to the overall breast volume, increases the risk of developing breast cancer. Although previous studies have utilized deep learning to assess breast density, the limited public availability of data and quantitative tools hinders the development of better assessment tools. Our objective was to (1) create and share a large dataset of pixel-wise annotations according to well-defined criteria, and (2) develop, evaluate, and share an automated segmentation method for breast, FGT, and blood vessels using convolutional neural networks. We used the Duke Breast Cancer MRI dataset to randomly select 100 MRI studies and manually annotated the breast, FGT, and blood vessels for each study. Model performance was evaluated using the Dice similarity coefficient (DSC). The model achieved DSC values of 0.92 for breast, 0.86 for FGT, and 0.65 for blood vessels on the test set. The correlation between our model's predicted breast density and the manually generated masks was 0.95. The correlation between the predicted breast density and qualitative radiologist assessment was 0.75. Our automated models can accurately segment breast, FGT, and blood vessels using pre-contrast breast MRI data. The data and the models were made publicly available.
乳腺密度是指相对于整个乳腺体积的纤维腺体组织(FGT)的数量,它会增加患乳腺癌的风险。虽然之前的研究已经利用深度学习来评估乳腺密度,但数据和定量工具的有限公开可用性阻碍了更好的评估工具的发展。我们的目标是:(1)根据明确的标准创建和共享一个大型像素级注释数据集;(2)使用卷积神经网络开发、评估和共享一种用于乳腺、FGT 和血管的自动分割方法。我们使用杜克大学乳腺癌 MRI 数据集随机选择了 100 项 MRI 研究,并对每一项研究的乳腺、FGT 和血管进行了手动标注。模型性能使用骰子相似系数(DSC)进行评估。该模型在测试集上对乳腺、FGT 和血管的 DSC 值分别为 0.92、0.86 和 0.65。我们的模型预测的乳腺密度与手动生成的掩模之间的相关性为 0.95。预测的乳腺密度与定性放射科医生评估之间的相关性为 0.75。我们的自动模型可以使用预处理的乳腺 MRI 数据准确地分割乳腺、FGT 和血管。数据和模型已经公开。