Suppr超能文献

通过融合地球静止卫星风云四号B星和 Himawari-9 星改进亚洲陆地气溶胶光学厚度的每小时估计值。

Improved hourly estimate of aerosol optical thickness over Asian land by fusing geostationary satellites Fengyun-4B and Himawari-9.

作者信息

Cheng Yueming, Dai Tie, Goto Daisuke, Chen Lin, Si Yidan, Murakami Hiroshi, Yoshida Mayumi, Zhang Peng, Cao Junji, Nakajima Teruyuki, Shi Guangyu

机构信息

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China.

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China.

出版信息

Sci Total Environ. 2024 May 1;923:171541. doi: 10.1016/j.scitotenv.2024.171541. Epub 2024 Mar 5.

Abstract

Asian over-land aerosols are complexities due to a mixture of anthropogenic air pollutants and natural dust. The accuracy of the aerosol optical thickness (AOT) retrieved from the satellite is crucial to their application in the aerosol data assimilation system. Fusion of AOTs with high spatiotemporal resolution from next-generation geostationary satellites such as Fengyun-4B (FY-4B) and Himawari-9, provides a new high-quality dataset capturing the aerosol spatiotemporal variability for data assimilation. This study develops a complete fusion algorithm to estimate the optimal AOT over-land in Asia from September 2022 to August 2023 at 10 km × 10 km resolution with high efficiency. The data fusion involves four steps: (1) investigating the spatiotemporal variability of FY-4B AOT within the past 1 h and 12 km radius calculation domain; (2) utilizing the aerosol spatiotemporal variability characteristics to estimate FY-4B pure and hourly merged AOTs; (3) performing bias corrections for FY-4B and Himwari-9 hourly merged AOT for different observation times and seasons considering pixel-level errors for each satellite; (4) fusing the bias-corrected FY-4B and Himawari-9 hourly merged AOT based on maximum-likelihood estimation (MLE) method. Compared to the original FY-4B AOT, validation with AERONET observation confirms that the root mean square error (RMSE) of hourly merged FY-4B AOT decreases by around 40.6 % and the correlation coefficient (CORR) increases by about 27.8 %. Compared to FY-4B and Himawari-9 merged AOT, the fused AOT significantly decreases (increases) RMSE (CORR) by around 24.7 % (7.3 %) and 20.2 % (5.6 %). In addition, fused AOT is double the number of single-sensor merged AOT. Fusion aerosol map accurately describes the spatial and temporal variations in Asian regions controlled by air pollution and dust storms. Further studies are required for other landscapes with different satellite combinations to promote the application in the data assimilation system.

摘要

亚洲陆地上的气溶胶较为复杂,因为其是人为空气污染物和自然沙尘的混合物。从卫星反演得到的气溶胶光学厚度(AOT)的准确性对于其在气溶胶数据同化系统中的应用至关重要。将来自风云四号B星(FY - 4B)和 Himawari - 9等下一代地球静止卫星的具有高时空分辨率的AOT进行融合,可提供一个新的高质量数据集,用于捕捉气溶胶的时空变化以进行数据同化。本研究开发了一种完整的融合算法,以高效地估计2022年9月至2023年8月亚洲陆地上10千米×10千米分辨率的最优AOT。数据融合包括四个步骤:(1)研究过去1小时内FY - 4B AOT在12千米半径计算域内的时空变化;(2)利用气溶胶时空变化特征估计FY - 4B的纯净且每小时合并的AOT;(3)针对不同观测时间和季节,考虑每颗卫星的像元级误差,对FY - 4B和Himwari - 9每小时合并的AOT进行偏差校正;(4)基于最大似然估计(MLE)方法融合经过偏差校正的FY - 4B和Himawari - 9每小时合并的AOT。与原始的FY - 4B AOT相比,通过AERONET观测进行验证表明,每小时合并的FY - 4B AOT的均方根误差(RMSE)降低了约40.6%,相关系数(CORR)提高了约27.8%。与FY - 4B和Himawari - 9合并的AOT相比,融合后的AOT显著降低(提高)了RMSE(CORR),分别降低约24.7%(7.3%)和20.2%(5.6%)。此外,融合后的AOT数量是单传感器合并AOT数量的两倍。融合气溶胶图准确描述了受空气污染和沙尘暴控制的亚洲地区的时空变化。对于其他具有不同卫星组合的地貌,还需要进一步研究以促进其在数据同化系统中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验