Suppr超能文献

使用可开环配体制造自膨胀金属有机笼

Fabrication of Self-Expanding Metal-Organic Cages Using a Ring-Openable Ligand.

作者信息

Nishijima Ami, Osugi Yuto, Uemura Takashi

机构信息

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan.

出版信息

Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202404155. doi: 10.1002/anie.202404155. Epub 2024 Mar 22.

Abstract

Metal-organic cages (MOCs), which are formed via coordination-driven assembly, are being extensively developed for various applications owing to the utility of their accessible molecular-sized cavity. While MOC structures are uniquely and precisely predetermined by the metal coordination number and ligand configuration, tailoring MOCs to further modulate the size, shape, and chemical environment of the cavities has become intensively studied for a more efficient and adaptive molecular binding. Herein, we report self-expanding MOCs that exhibit remarkable structural variations in cage size and flexibility while maintaining their topology. A cyclic ligand with an oligomeric chain tethering the two benzene rings of stilbene was designed and mixed with Rh ions to obtain the parent MOCs. These MOCs were successfully transformed into expanded MOCs via the selective cleavage of the double bond in stilbene. The expanded MOCs could effectively trap multidentate N-donor molecules in their enlarged cavity, in contrast to the original MOCs with a narrow cavity. As the direct synthesis of expanded MOCs is impractical because of the entropically disfavored structures, self-expansion using ring-openable ligands is a promising approach that allows precision engineering and the production of functional MOCs that would otherwise be inaccessible.

摘要

金属有机笼(MOCs)是通过配位驱动组装形成的,由于其可利用的分子尺寸空腔,正被广泛开发用于各种应用。虽然MOC结构由金属配位数和配体构型唯一且精确地预先确定,但为了实现更高效和适应性更强的分子结合,对MOC进行定制以进一步调节空腔的大小、形状和化学环境已成为深入研究的课题。在此,我们报道了自扩张型MOCs,它们在保持拓扑结构的同时,在笼尺寸和柔韧性方面表现出显著的结构变化。设计了一种带有连接芪的两个苯环的寡聚链的环状配体,并将其与铑离子混合以获得母体MOCs。通过芪中双键的选择性裂解,这些MOCs成功转化为扩张型MOCs。与具有狭窄空腔的原始MOCs相比,扩张型MOCs能够在其扩大的空腔中有效地捕获多齿氮供体分子。由于熵不利结构使得直接合成扩张型MOCs不切实际,使用可开环配体的自扩张是一种有前景的方法,它允许进行精确工程设计并生产出否则难以获得的功能性MOCs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验