Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute (O.L.M., J.N., L.S., A.M., L.R., S.P., A.B., A.D.L.).
Department of Excellence of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy (J.N., G.D.N.).
Circ Res. 2024 Apr 12;134(8):990-1005. doi: 10.1161/CIRCRESAHA.123.323826. Epub 2024 Mar 8.
Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood.
We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction.
We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BApoE) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BApoE mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature.
These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.
越来越多的证据表明,生物活性神经鞘脂,特别是 S1P(鞘氨醇-1-磷酸)和神经酰胺,与冠状动脉疾病有关。此外,特定的血浆神经酰胺种类可以预测主要心血管事件。病变易发生部位的内皮功能障碍在动脉粥样硬化中起着关键作用。然而,神经鞘脂代谢和信号转导如何变化以及如何导致内皮功能障碍和动脉粥样硬化仍然知之甚少。
我们使用了一种已建立的小鼠冠状动脉粥样硬化模型,结合神经鞘脂组学、RNA 测序、流式细胞术和免疫染色,研究了神经鞘脂代谢和信号转导对内皮细胞(EC)激活和功能障碍的贡献。
我们证明了血流动力学应激诱导内皮神经鞘脂从头生物合成的早期代谢重编程,有利于 S1P 信号而不是神经酰胺作为一种保护反应。这一发现与当前认为神经酰胺积累导致内皮功能障碍的观点发生了重大转变。酶 SPT(丝氨酸棕榈酰转移酶)开始神经鞘脂的从头生物合成,并被内质网膜蛋白 NOGO-B(reticulon-4B)抑制。在这里,我们表明,血流动力学应激会使 ApoE 小鼠心肌内皮细胞中的 NOGO-B 上调,并在小鼠和人类的冠状动脉病变内皮中表达。我们证明,内皮细胞中特异性缺乏 NOGO-B 的小鼠(Nogo-A/BApoE)对冠状动脉粥样硬化的发展和进展以及死亡率具有抗性。Nogo-A/BApoE 小鼠的纤维帽厚度显著增加,与坏死核心和巨噬细胞浸润减少相关。在机制上,内皮细胞中 NOGO-B 的缺失维持了神经鞘脂代谢向 S1P 的重编程,赋予了动脉粥样硬化保护的内皮转录特征。
这些数据表明,血流动力学应激诱导了神经鞘脂代谢的保护性重编程,有利于 S1P 而不是神经酰胺。NOGO-B 的缺失维持了神经鞘脂代谢向 S1P 的重编程,保护内皮细胞在血流动力学应激下不被激活,并防止冠状动脉粥样硬化。这些发现还为基于神经鞘脂的治疗方法奠定了基础,以限制动脉粥样硬化的进展。