Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Adv Sci (Weinh). 2024 May;11(20):e2307257. doi: 10.1002/advs.202307257. Epub 2024 Mar 8.
DNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence-specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structures and properties. Here the integration of DNA origami hinge nanodevices and coiled-coil peptides are reported into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, it is made multiple higher-order assemblies (i.e., polymorphic assembly) by organizing clusters of peptides into patches or arranging single peptides into patterns on the surfaces of DNA origami to control the relative orientation of devices. The coiled-coil interactions are used to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based reconfiguration. Reconfiguration of linear assemblies leads to micron scale motions and ≈2.5-10-fold increase in bending stiffness. The results provide a foundation for stimulus-responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.
DNA 折纸纳米器件通过利用核酸的序列特异性相互作用来实现可编程的结构和可调的机械和动态特性。以前的进展还将 DNA 折纸确立为一种有用的构建块,通过层次自组装来制造具有明确定义的微米级结构,但这些努力在很大程度上利用了 DNA 折纸的结构特征。可调的动态和机械特性也为制造具有自适应结构和特性的组件提供了机会。在这里,报道了 DNA 折纸铰链纳米器件和卷曲螺旋肽的集成到混合可重构组件中。通过相同的动态器件和肽相互作用,通过将肽簇组织成补丁或将单个肽排列在 DNA 折纸的表面上的图案,可以将肽组织成补丁或将单个肽排列在 DNA 折纸的表面上的图案,从而控制器件的相对取向。使用卷曲螺旋相互作用来构建圆形和线性组装,其结构和机械性能可以通过基于 DNA 的重构来调节。线性组装的重构导致微米级运动和弯曲刚度增加约 2.5-10 倍。结果为刺激响应性混合组件提供了基础,这些组件可以响应核酸、肽、蛋白质或其他触发因素来调整其结构和特性。