Wibowo Romualdus Enggar, Garcia-Diez Raul, Bystron Tomas, van der Merwe Marianne, Prokop Martin, Arce Mauricio D, Efimenko Anna, Steigert Alexander, Bernauer Milan, Wilks Regan G, Bouzek Karel, Bär Marcus
Department of Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Department of Inorganic Technology, University of Chemistry and Technology Prague, Technicka 5, Prague 6 166 28, Czech Republic.
J Am Chem Soc. 2024 Mar 20;146(11):7386-7399. doi: 10.1021/jacs.3c12381. Epub 2024 Mar 9.
tender X-ray absorption near-edge structure (XANES) spectroscopy at the P -edge was utilized to investigate the oxidation mechanism of aqueous HPO on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous HPO via HO yielding HPO and H. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous HPO oxidation mechanism. XANES studies of aqueous 5 mol dm HPO on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous HPO to HPO. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with HO, as further supported by XANES measurements of aqueous HPO of different concentrations, showing a more pronounced oxidation in electrolytes with a higher HO content. The significant role of water in the oxidation of HPO to HPO supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by HPO during HT-PEMFC operation.
利用磷(P)边的软X射线吸收近边结构(XANES)光谱,研究了在与高温聚合物电解质膜燃料电池(HT-PEMFC)应用相关的各种条件下,铂电极上的水合磷酸(HPO)的氧化机制。在不同的软X射线辐照剂量下进行了XANES和电化学分析,结果表明,强辐射通过羟基自由基(HO)诱导水合HPO氧化,生成磷酸根离子(HPO)和氢离子(H)。成功开发了一种广泛适用的实验程序来抑制这些不良的辐射诱导效应,从而能够更准确地确定水合HPO的氧化机制。对具有不同铂利用率和表面粗糙度的电极上的5 mol dm水合HPO进行的XANES研究表明,铂催化水合HPO氧化为磷酸根离子(HPO)。在铂电极上施加正电位或提高电解质温度时,这种氧化作用会增强,后者得到了补充离子交换色谱测量的证实。值得注意的是,所有这些氧化过程都涉及与羟基自由基(HO)的反应,不同浓度水合HPO的XANES测量进一步支持了这一点,结果表明在羟基自由基(HO)含量较高的电解质中氧化作用更为明显。水在HPO氧化为HPO过程中的重要作用支持了本工作中观察到的各种化学过程所提出的反应机制,并为减轻HT-PEMFC运行期间HPO对铂催化剂中毒的潜在策略提供了有价值的见解。