Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, St Vincent's University Hospital, Dublin, Ireland.
Department of Neurology, St Vincent's University Hospital, Dublin, Ireland.
Clin Biochem. 2024 Apr;126:110746. doi: 10.1016/j.clinbiochem.2024.110746. Epub 2024 Mar 8.
A rapidly expanding repertoire of neural antibody biomarkers exists for autoimmune central nervous system (CNS) disorders. Following clinical recognition of an autoimmune CNS disorder, the detection of a neural antibody facilitates diagnosis and informs prognosis and management. This review considers the phenotypes, diagnostic assay methodologies, and clinical utility of neural antibodies in autoimmune CNS disorders. Autoimmune CNS disorders may present with a diverse range of clinical features. Clinical phenotype should inform the neural antibodies selected for testing via the use of phenotype-specific panels. Both serum and cerebrospinal fluid (CSF) are preferred in the vast majority of cases but for some analytes either CSF (e.g. N-methyl-D-aspartate receptor [NMDA-R] IgG) or serum (e.g. aquaporin-4 [AQP4] IgG) specimens may be preferred. Screening using 2 methods is recommended for most analytes, particularly paraneoplastic antibodies. We utilize murine tissue-based indirect immunofluorescence assay (TIFA) with subsequent confirmatory protein-specific testing. The cellular location of the target antigen informs choice of confirmatory diagnostic assay (e.g. blot for intracellular antigens such as Hu; cell-based assay for cell surface targets such as leucine-rich glioma inactivated 1 [LGI1]). Titers of positive results have limited diagnostic utility with the exception of glutamic acid decarboxylase (GAD) 65 IgG autoimmunity, which is associated with neurological disease at higher values. While novel antibodies are typically discovered using established techniques such as TIFA and immunoprecipitation-mass spectrometry, more recent high-throughput molecular technologies (such as protein microarray and phage-display immunoprecipitation sequencing) may expedite the process of antibody discovery. Individual neural antibodies inform the clinician regarding the clinical associations, oncological risk stratification and tumor histology, the likely prognosis, and immunotherapy choice. In the era of neural antibody biomarkers for autoimmune CNS disorders, access to appropriate laboratory assays for neural antibodies is of critical importance in the diagnosis and management of these disorders.
针对自身免疫性中枢神经系统 (CNS) 疾病,目前已经存在大量的神经抗体生物标志物。在临床识别出自免疫性 CNS 疾病后,神经抗体的检测有助于诊断,并为预后和治疗提供信息。本综述考虑了自身免疫性 CNS 疾病中神经抗体的表型、诊断检测方法和临床应用。自身免疫性 CNS 疾病可能表现出多种不同的临床特征。临床表型应通过使用表型特异性检测面板来指导选择用于检测的神经抗体。在绝大多数情况下,无论是血清还是脑脊液 (CSF) 都首选,但对于某些分析物,CSF(例如 N-甲基-D-天冬氨酸受体 [NMDA-R] IgG)或血清(例如水通道蛋白-4 [AQP4] IgG)标本可能更适合。建议对大多数分析物使用 2 种方法进行筛查,尤其是副肿瘤抗体。我们利用基于鼠组织的间接免疫荧光测定 (TIFA) 进行后续的蛋白特异性检测。靶抗原的细胞位置决定了确认诊断检测的选择(例如,用于细胞内抗原的印迹,如 Hu;用于细胞表面靶标的细胞基础测定,如富亮氨酸胶质瘤失活 1 [LGI1])。阳性结果的滴度除了谷氨酸脱羧酶 (GAD) 65 IgG 自身免疫外,其诊断效用有限,因为谷氨酸脱羧酶 65 IgG 自身免疫与更高水平的神经病变相关。虽然新型抗体通常使用 TIFA 和免疫沉淀-质谱等已建立的技术发现,但最近的高通量分子技术(如蛋白质微阵列和噬菌体展示免疫沉淀测序)可能会加速抗体发现的过程。个体神经抗体为临床医生提供了有关临床关联、肿瘤学风险分层和肿瘤组织学、可能的预后以及免疫治疗选择的信息。在自身免疫性 CNS 疾病的神经抗体生物标志物时代,获得适当的神经抗体实验室检测对于这些疾病的诊断和治疗至关重要。