Suppr超能文献

WATUNet:一种用于容积扫描成像超声分割的深度神经网络。

WATUNet: a deep neural network for segmentation of volumetric sweep imaging ultrasound.

作者信息

Khaledyan Donya, Marini Thomas J, O'Connell Avice, Meng Steven, Kan Jonah, Brennan Galen, Zhao Yu, Baran Timothy M, Parker Kevin J

机构信息

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States of America.

Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America.

出版信息

Mach Learn Sci Technol. 2024 Mar 1;5(1):015042. doi: 10.1088/2632-2153/ad2e15. Epub 2024 Mar 8.

Abstract

Limited access to breast cancer diagnosis globally leads to delayed treatment. Ultrasound, an effective yet underutilized method, requires specialized training for sonographers, which hinders its widespread use. Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture high-quality ultrasound images. Combined with deep learning, like convolutional neural networks, it can potentially transform breast cancer diagnosis, enhancing accuracy, saving time and costs, and improving patient outcomes. The widely used UNet architecture, known for medical image segmentation, has limitations, such as vanishing gradients and a lack of multi-scale feature extraction and selective region attention. In this study, we present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet). In this model, we incorporate wavelet gates and attention gates between the encoder and decoder instead of a simple connection to overcome the limitations mentioned, thereby improving model performance. Two datasets are utilized for the analysis: the public 'Breast Ultrasound Images' dataset of 780 images and a private VSI dataset of 3818 images, captured at the University of Rochester by the authors. Both datasets contained segmented lesions categorized into three types: no mass, benign mass, and malignant mass. Our segmentation results show superior performance compared to other deep networks. The proposed algorithm attained a Dice coefficient of 0.94 and an F1 score of 0.94 on the VSI dataset and scored 0.93 and 0.94 on the public dataset, respectively. Moreover, our model significantly outperformed other models in McNemar's test with false discovery rate correction on a 381-image VSI set. The experimental findings demonstrate that the proposed WATUNet model achieves precise segmentation of breast lesions in both standard-of-care and VSI images, surpassing state-of-the-art models. Hence, the model holds considerable promise for assisting in lesion identification, an essential step in the clinical diagnosis of breast lesions.

摘要

全球范围内乳腺癌诊断途径有限导致治疗延迟。超声作为一种有效但未得到充分利用的方法,需要超声检查人员接受专门培训,这阻碍了其广泛应用。容积扫描成像(VSI)是一种创新方法,使未经培训的操作人员能够获取高质量超声图像。与卷积神经网络等深度学习相结合,它有可能改变乳腺癌诊断方式,提高准确性、节省时间和成本,并改善患者预后。广泛使用的用于医学图像分割的UNet架构存在局限性,如梯度消失、缺乏多尺度特征提取和选择性区域注意力。在本研究中,我们提出了一种名为小波注意力UNet(WATUNet)的新型分割模型。在该模型中,我们在编码器和解码器之间引入小波门和注意力门,而不是简单连接,以克服上述局限性,从而提高模型性能。分析使用了两个数据集:包含780张图像的公共“乳腺超声图像”数据集和作者在罗切斯特大学采集的包含3818张图像的私有VSI数据集。两个数据集都包含分为三种类型的分割病变:无肿块、良性肿块和恶性肿块。我们的分割结果显示出比其他深度网络更优的性能。所提出的算法在VSI数据集上的Dice系数为0.94,F1分数为0.94,在公共数据集上的得分分别为0.93和0.94。此外,在对381张图像的VSI集进行错误发现率校正的McNemar检验中,我们的模型显著优于其他模型。实验结果表明,所提出的WATUNet模型在标准护理图像和VSI图像中均能实现乳腺病变的精确分割,超越了现有最先进的模型。因此,该模型在辅助病变识别方面具有很大潜力,而病变识别是乳腺病变临床诊断的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c706/10921088/7ca3d6d8bb92/mlstad2e15f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验