Suppr超能文献

药物向中枢神经系统的递送。

Drug delivery to the central nervous system.

作者信息

Nance Elizabeth, Pun Suzie H, Saigal Rajiv, Sellers Drew L

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA, USA.

These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers.

出版信息

Nat Rev Mater. 2022 Apr;7(4):314-331. doi: 10.1038/s41578-021-00394-w. Epub 2021 Dec 3.

Abstract

Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.

摘要

尽管全球中枢神经系统(CNS)疾病的发病率不断上升,但CNS药物开发仍然具有挑战性,存在成本高、临床应用途径漫长以及失败率高等问题。CNS受到生理屏障的高度保护,特别是血脑屏障和血脑脊液屏障,这限制了大多数药物的进入。生物材料可以设计成绕过或穿过这些屏障,从而实现药物向CNS的可控递送。在本综述中,我们首先研究正常和患病的CNS生理学对药物向脑和脊髓递送的影响。然后,我们讨论通过全身给药、直接向CNS给药、鼻内给药或通过肌肉注射进行外周给药的CNS药物递送设计和材料。最后,我们强调了用于CNS药物递送的材料设计面临的重要挑战和机遇,以及CNS药物递送预期的临床影响。

相似文献

1
Drug delivery to the central nervous system.
Nat Rev Mater. 2022 Apr;7(4):314-331. doi: 10.1038/s41578-021-00394-w. Epub 2021 Dec 3.
2
Biomaterials for local drug delivery in central nervous system.
Int J Pharm. 2019 Apr 5;560:92-100. doi: 10.1016/j.ijpharm.2019.01.071. Epub 2019 Feb 10.
3
A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration.
J Pharmacokinet Pharmacodyn. 2021 Oct;48(5):639-654. doi: 10.1007/s10928-021-09761-0. Epub 2021 May 15.
4
Immune cells: potential carriers or agents for drug delivery to the central nervous system.
Mil Med Res. 2024 Mar 29;11(1):19. doi: 10.1186/s40779-024-00521-y.
5
Methods of Drug Delivery in Neurotrauma.
Methods Mol Biol. 2016;1462:89-100. doi: 10.1007/978-1-4939-3816-2_6.
6
Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review.
J Control Release. 2021 Jan 10;329:16-35. doi: 10.1016/j.jconrel.2020.11.049. Epub 2020 Nov 28.
7
Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics.
Front Bioeng Biotechnol. 2022 Jul 19;10:954470. doi: 10.3389/fbioe.2022.954470. eCollection 2022.
8
Targeting Ligands Deliver Model Drug Cargo into the Central Nervous System along Autonomic Neurons.
ACS Nano. 2019 Oct 22;13(10):10961-10971. doi: 10.1021/acsnano.9b01515. Epub 2019 Oct 7.
9
Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies.
J Control Release. 2022 Jan;341:782-811. doi: 10.1016/j.jconrel.2021.12.009. Epub 2021 Dec 11.

引用本文的文献

1
Innovative nanocarriers: Synthetic and biomimetic strategies for enhanced drug delivery.
Mater Today Bio. 2025 Aug 8;34:102180. doi: 10.1016/j.mtbio.2025.102180. eCollection 2025 Oct.
2
β-Lactam Potentiating Activity, Molecular Docking, and ADMET Analysis of 3-Substituted Coumarins.
Curr Microbiol. 2025 Jul 30;82(9):422. doi: 10.1007/s00284-025-04397-6.
3
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights.
J Funct Biomater. 2025 Jul 9;16(7):255. doi: 10.3390/jfb16070255.
4
Precision targeting of the CNS: recent progress in brain-directed nanodrug delivery.
RSC Adv. 2025 Jul 21;15(32):25910-25928. doi: 10.1039/d5ra03578c.
6
Three-stage sequential targeted nasal drops for correcting abnormal mitochondrial division in microglia.
Bioact Mater. 2025 Jul 1;52:810-828. doi: 10.1016/j.bioactmat.2025.06.029. eCollection 2025 Oct.
8
Advanced Pharmaceutical Nanotechnologies Applied for Chinese Herbal Medicines.
Adv Sci (Weinh). 2025 Aug;12(31):e00167. doi: 10.1002/advs.202500167. Epub 2025 Jun 20.
10
Fusogenic lipid nanoparticles for rapid delivery of large therapeutic molecules to exosomes.
Nat Commun. 2025 May 23;16(1):4799. doi: 10.1038/s41467-025-59489-5.

本文引用的文献

1
Governing Transport Principles for Nanotherapeutic Application in the Brain.
Curr Opin Chem Eng. 2020 Dec;30(12):112-119. doi: 10.1016/j.coche.2020.08.010. Epub 2020 Oct 18.
4
Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain.
Biomaterials. 2021 Jan;266:120419. doi: 10.1016/j.biomaterials.2020.120419. Epub 2020 Sep 28.
5
Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders.
J Neurosurg. 2020 Jul 10;134(6):1751-1763. doi: 10.3171/2020.4.JNS20701. Print 2021 Jun 1.
6
Intramuscular Delivery of Gene Therapy for Targeting the Nervous System.
Front Mol Neurosci. 2020 Jul 17;13:129. doi: 10.3389/fnmol.2020.00129. eCollection 2020.
7
Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers.
Neuron. 2020 Sep 23;107(6):1029-1047. doi: 10.1016/j.neuron.2020.07.010. Epub 2020 Aug 4.
8
Injectable PLGA-Coated Ropivacaine Produces A Long-Lasting Analgesic Effect on Incisional Pain and Neuropathic Pain.
J Pain. 2021 Feb;22(2):180-195. doi: 10.1016/j.jpain.2020.03.009. Epub 2020 Jul 30.
9
Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19141-19150. doi: 10.1073/pnas.2002016117. Epub 2020 Jul 23.
10
Stroke.
Lancet. 2020 Jul 11;396(10244):129-142. doi: 10.1016/S0140-6736(20)31179-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验