Mastrocinque Francesco, Bullard George, Alatis James A, Albro Joseph A, Nayak Animesh, Williams Nicholas X, Kumbhar Amar, Meikle Hope, Widel Zachary X W, Bai Yusong, Harvey Alexis K, Atkin Joanna M, Waldeck David H, Franklin Aaron D, Therien Michael J
Department of Chemistry, Duke University, Durham, NC 27708.
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2317078121. doi: 10.1073/pnas.2317078121. Epub 2024 Mar 11.
Covalent bonding interactions determine the energy-momentum (-) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the - dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity. Electronic spectral, chiro-optic, potentiometric, electronic device, and work function data corroborate that the magnitude of band gap opening depends on the nature of the polymer electronic structure. Polymer dewrapping reverses the conducting-to-semiconducting phase transition, restoring the native metallic carbon nanotube electronic structure. These results address a long-standing challenge to develop carbon nanotube electronic structures that are not realized through disruption of π conjugation, and establish a roadmap for designing and tuning specialized semiconductors that feature band gaps on the order of a few hundred meV.
共价键相互作用决定了固态材料的能量 - 动量(-)色散(能带结构)。在此,我们表明非共价相互作用可以调节低维纳米级导体费米能级附近的 - 色散。我们证明,通过以固定螺旋周期性对纳米管表面进行聚合物包裹,可以在金属碳纳米管中打开低能带隙。电子光谱、旋光、电位、电子器件和功函数数据证实,能带隙打开的幅度取决于聚合物电子结构的性质。聚合物解包裹可逆转从导电到半导体的相变,恢复天然金属碳纳米管的电子结构。这些结果解决了一个长期存在的挑战,即开发不通过破坏π共轭来实现的碳纳米管电子结构,并为设计和调谐具有几百毫电子伏特量级能带隙的特殊半导体建立了路线图。