Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada.
Sensors (Basel). 2024 Feb 23;24(5):1453. doi: 10.3390/s24051453.
The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting. It focuses on temporally resolved cerebral pressure-flow and oxygen delivery data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volunteers, patients with various conditions, and animal subjects. Methodologies range from traditional statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv. Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees showed promise, especially in ICP prediction. Nonlinear models and multi-input models were prevalent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis, benefiting neurocritical care applications.
脑压力-血流动力学的时频域建模和预测对兽医和人类生命科学研究具有重要意义,可以通过提前预测脑血流(CBF)/灌注、营养输送以及颅内压(ICP)/顺应性行为来改善临床护理。尽管它具有潜力,但文献中缺乏关于最佳模型类型、结构、数据流和性能的一致性。本系统综述全面考察了脑生理时间序列建模和预测的当前现状。它重点关注从侵入性/非侵入性脑传感器获得的具有时间分辨率的脑压力-血流和氧输送数据流。通过对数据库进行全面搜索,确定了 88 项用于评估的研究,涵盖了来自健康志愿者、各种疾病患者和动物受试者的各种脑生理信号。方法范围从传统的统计时间序列分析到创新的机器学习算法。共有 30 项健康队列研究和 23 项创伤性脑损伤(TBI)患者队列研究分别集中于 CBFv 建模和 ICP 预测。动物研究仅分析 CBF/CBFv。在 88 项研究中,65 项主要使用传统的统计时间序列分析,其中转移函数分析(TFA)、小波分析和自回归(AR)模型较为突出。在机器学习算法中,支持向量机(SVM)得到了广泛应用,决策树显示出了潜力,特别是在 ICP 预测方面。非线性模型和多输入模型较为流行,强调了多元建模和预测的重要性。本综述阐明了知识差距,并为未来的研究奠定了基础,以推进脑生理信号分析,造福神经危重病应用。