Suppr超能文献

室温金刚石中中性和带负电硅空位中心的光致电荷态动力学

Photo-Induced Charge State Dynamics of the Neutral and Negatively Charged Silicon Vacancy Centers in Room-Temperature Diamond.

作者信息

Garcia-Arellano G, López-Morales G I, Manson N B, Flick J, Wood A A, Meriles C A

机构信息

Department of Physics, CUNY-City College of New York, New York, NY, 10031, USA.

Department of Quantum Science and Technology, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia.

出版信息

Adv Sci (Weinh). 2024 Jun;11(22):e2308814. doi: 10.1002/advs.202308814. Epub 2024 Mar 12.

Abstract

The silicon vacancy (SiV) center in diamond is drawing much attention due to its optical and spin properties, attractive for quantum information processing and sensing. Comparatively little is known, however, about the dynamics governing SiV charge state interconversion mainly due to challenges associated with generating, stabilizing, and characterizing all possible charge states, particularly at room temperature. Here, multi-color confocal microscopy and density functional theory are used to examine photo-induced SiV recombination - from neutral, to single-, to double-negatively charged - over a broad spectral window in chemical-vapor-deposition (CVD) diamond under ambient conditions. For the SiV to SiV transition, a linear growth of the photo-recombination rate with laser power at all observed wavelengths is found, a hallmark of single photon dynamics. Laser excitation of SiV, on the other hand, yields only fractional recombination into SiV, a finding that is interpreted in terms of a photo-activated electron tunneling process from proximal nitrogen atoms.

摘要

金刚石中的硅空位(SiV)中心因其光学和自旋特性而备受关注,这些特性对量子信息处理和传感具有吸引力。然而,关于控制SiV电荷态相互转换的动力学,人们了解得相对较少,这主要是由于在生成、稳定和表征所有可能的电荷态方面存在挑战,尤其是在室温下。在这里,利用多色共聚焦显微镜和密度泛函理论,研究了在环境条件下化学气相沉积(CVD)金刚石的宽光谱窗口内光诱导的SiV复合过程——从中性到单负电荷再到双负电荷。对于SiV到SiV的转变,发现在所有观察到的波长下,光复合速率与激光功率呈线性增长,这是单光子动力学的一个标志。另一方面,SiV的激光激发仅产生部分复合为SiV,这一发现可根据来自近端氮原子的光激活电子隧穿过程来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba99/11165459/dbc8a6e60682/ADVS-11-2308814-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验