Cheng Cheng, Weiss Jeremy C
Carnegie Mellon University, Pittsburgh, PA, United States.
National Library of Medicine, Bethesda, MD, United States.
Proc Mach Learn Res. 2023 Aug;219:94-109.
Reliable extraction of temporal relations from clinical notes is a growing need in many clinical research domains. Our work introduces typed markers to the task of clinical temporal relation extraction. We demonstrate that the addition of medical entity information to clinical text as tags with context sentences then input to a transformer-based architecture can outperform more complex systems requiring feature engineering and temporal reasoning. We propose several strategies of typed marker creation that incorporate entity type information at different granularities, with extensive experiments to test their effectiveness. Our system establishes the best result on I2B2, a clinical benchmark dataset for temporal relation extraction, with a F1 at 83.5% that provides a substantial 3.3% improvement over the previous best system.
从临床记录中可靠地提取时间关系在许多临床研究领域的需求日益增长。我们的工作将类型化标记引入到临床时间关系提取任务中。我们证明,将医学实体信息作为带有上下文句子的标签添加到临床文本中,然后输入到基于Transformer的架构中,其性能可以超过需要特征工程和时间推理的更复杂系统。我们提出了几种创建类型化标记的策略,这些策略在不同粒度上纳入了实体类型信息,并进行了广泛的实验来测试其有效性。我们的系统在I2B2(一个用于时间关系提取的临床基准数据集)上取得了最佳结果,F1值为83.5%,比之前的最佳系统有显著的3.3%的提升。