Suppr超能文献

量子点荧光成像:利用原子结构关联研究改善光物理性质。

Quantum Dot Fluorescent Imaging: Using Atomic Structure Correlation Studies to Improve Photophysical Properties.

作者信息

Torres Ruben, Thal Lucas B, McBride James R, Cohen Bruce E, Rosenthal Sandra J

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.

Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Jan 31;128(9):3632-3640. doi: 10.1021/acs.jpcc.3c07367. eCollection 2024 Mar 7.

Abstract

Efforts to study intricate, higher-order cellular functions have called for fluorescence imaging under physiologically relevant conditions such as tissue systems in simulated native buffers. This endeavor has presented novel challenges for fluorescent probes initially designed for use in simple buffers and monolayer cell culture. Among current fluorescent probes, semiconductor nanocrystals, or quantum dots (QDs), offer superior photophysical properties that are the products of their nanoscale architectures and chemical formulations. While their high brightness and photostability are ideal for these biological environments, even state of the art QDs can struggle under certain physiological conditions. A recent method correlating electron microscopy ultrastructure with single-QD fluorescence has begun to highlight subtle structural defects in QDs once believed to have no significant impact on photoluminescence (PL). Specific defects, such as exposed core facets, have been shown to quench QD PL in physiologically accurate conditions. For QD-based imaging in complex cellular systems to be fully realized, mechanistic insight and structural optimization of size and PL should be established. Insight from single QD resolution atomic structure and photophysical correlative studies provides a direct course to synthetically tune QDs to match these challenging environments.

摘要

研究复杂的高阶细胞功能的工作需要在生理相关条件下进行荧光成像,比如在模拟天然缓冲液中的组织系统。这一努力给最初设计用于简单缓冲液和单层细胞培养的荧光探针带来了新的挑战。在当前的荧光探针中,半导体纳米晶体或量子点(QDs)具有卓越的光物理性质,这是其纳米级结构和化学配方的产物。虽然它们的高亮度和光稳定性对于这些生物环境来说是理想的,但即使是最先进的量子点在某些生理条件下也可能遇到困难。最近一种将电子显微镜超微结构与单量子点荧光相关联的方法,开始凸显出量子点中曾经被认为对光致发光(PL)没有显著影响的细微结构缺陷。特定的缺陷,如暴露的核心晶面,已被证明在生理精确条件下会淬灭量子点的光致发光。为了在复杂细胞系统中全面实现基于量子点的成像,应该建立关于量子点尺寸和光致发光的机理洞察和结构优化。来自单量子点分辨率原子结构和光物理相关研究的洞察为合成调控量子点以匹配这些具有挑战性的环境提供了一条直接途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc54/10926165/0a94b9979053/jp3c07367_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验