Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005 Paris, France.
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier 75 005 Paris, France.
Syst Biol. 2024 Sep 5;73(3):613-622. doi: 10.1093/sysbio/syae013.
Interspecific interactions, including host-symbiont associations, can profoundly affect the evolution of the interacting species. Given the phylogenies of host and symbiont clades and knowledge of which host species interact with which symbiont, two questions are often asked: "Do closely related hosts interact with closely related symbionts?" and "Do host and symbiont phylogenies mirror one another?." These questions are intertwined and can even collapse under specific situations, such that they are often confused one with the other. However, in most situations, a positive answer to the first question, hereafter referred to as "cophylogenetic signal," does not imply a close match between the host and symbiont phylogenies. It suggests only that past evolutionary history has contributed to shaping present-day interactions, which can arise, for example, through present-day trait matching, or from a single ancient vicariance event that increases the probability that closely related species overlap geographically. A positive answer to the second, referred to as "phylogenetic congruence," is more restrictive as it suggests a close match between the two phylogenies, which may happen, for example, if symbiont diversification tracks host diversification or if the diversifications of the two clades were subject to the same succession of vicariance events. Here we apply a set of methods (ParaFit, PACo, and eMPRess), whose significance is often interpreted as evidence for phylogenetic congruence, to simulations under 3 biologically realistic scenarios of trait matching, a single ancient vicariance event, and phylogenetic tracking with frequent cospeciation events. The latter is the only scenario that generates phylogenetic congruence, whereas the first 2 generate a cophylogenetic signal in the absence of phylogenetic congruence. We find that tests of global-fit methods (ParaFit and PACo) are significant under the 3 scenarios, whereas tests of event-based methods (eMPRess) are only significant under the scenario of phylogenetic tracking. Therefore, significant results from global-fit methods should be interpreted in terms of cophylogenetic signal and not phylogenetic congruence; such significant results can arise under scenarios when hosts and symbionts had independent evolutionary histories. Conversely, significant results from event-based methods suggest a strong form of dependency between hosts and symbionts evolutionary histories. Clarifying the patterns detected by different cophylogenetic methods is key to understanding how interspecific interactions shape and are shaped by evolution.
种间相互作用,包括宿主-共生体的关联,可深刻影响相互作用的物种的进化。鉴于宿主和共生体进化枝的系统发育以及对哪些宿主物种与哪些共生体相互作用的了解,通常会提出两个问题:“密切相关的宿主是否与密切相关的共生体相互作用?”和“宿主和共生体的系统发育是否相互镜像?”。这些问题相互交织,甚至在特定情况下可能会合并,因此常常被混淆。然而,在大多数情况下,对第一个问题的肯定回答,以下简称“共进化信号”,并不意味着宿主和共生体系统发育之间的紧密匹配。它仅表明过去的进化历史有助于塑造当今的相互作用,这些相互作用可能是由于当今的特征匹配,或者是由于单一的古代隔离事件增加了密切相关的物种在地理上重叠的可能性而产生的。对第二个问题的肯定回答,以下简称“系统发育一致性”,更为严格,因为它暗示了两个系统发育之间的紧密匹配,这种情况可能发生,例如,如果共生体的多样化与宿主的多样化相关,或者两个进化枝的多样化受到相同的隔离事件序列的影响。在这里,我们应用了一系列方法(ParaFit、PACo 和 eMPRess),其显著性通常被解释为系统发育一致性的证据,对 3 种具有生物学意义的特征匹配、单一古代隔离事件和频繁的共进化事件的系统发育跟踪模拟进行了应用。后者是唯一产生系统发育一致性的情况,而前两种情况在没有系统发育一致性的情况下产生共进化信号。我们发现,全局拟合方法(ParaFit 和 PACo)的测试在 3 种情况下都是显著的,而基于事件的方法(eMPRess)的测试仅在系统发育跟踪的情况下显著。因此,全局拟合方法的显著结果应根据共进化信号而不是系统发育一致性来解释;在宿主和共生体具有独立进化历史的情况下,可能会产生这种显著结果。相反,基于事件的方法的显著结果表明宿主和共生体进化历史之间存在强烈的依赖性。阐明不同共进化方法检测到的模式是理解种间相互作用如何塑造和受进化影响的关键。