Suppr超能文献

一种用于表面肌电分解的快速梯度卷积核补偿方法。

A fast gradient convolution kernel compensation method for surface electromyogram decomposition.

机构信息

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China.

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China.

出版信息

J Electromyogr Kinesiol. 2024 Jun;76:102869. doi: 10.1016/j.jelekin.2024.102869. Epub 2024 Mar 4.

Abstract

Decomposition of EMG signals provides the decoding of motor unit (MU) discharge timings. In this study, we propose a fast gradient convolution kernel compensation (fgCKC) decomposition algorithm for high-density surface EMG decomposition and apply it to an offline and real-time estimation of MU spike trains. We modified the calculation of the cross-correlation vectors to improve the calculation efficiency of the gradient convolution kernel compensation (gCKC) algorithm. Specifically, the new fgCKC algorithm considers the past gradient in addition to the current gradient. Furthermore, the EMG signals are divided by sliding windows to simulate real-time decomposition, and the proposed algorithm was validated on simulated and experimental signals. In the offline decomposition, fgCKC has the same robustness as gCKC, with sensitivity differences of 2.6 ± 1.3 % averaged across all trials and subjects. Nevertheless, depending on the number of MUs and the signal-to-noise ratio of signals, fgCKC is approximately 3 times faster than gCKC. In the real-time part, the processing only needed 240 ms average per window of EMG signals on a regular personal computer (IIntel(R) Core(TM) i5-12490F 3 GHz, 16 GB memory). These results indicate that fgCKC achieves real-time decomposition by significantly reducing processing time, providing more possibilities for non-invasive neuronal behavior research.

摘要

肌电图信号的分解提供了运动单位(MU)放电时间的解码。在这项研究中,我们提出了一种快速梯度卷积核补偿(fgCKC)分解算法,用于高密度表面肌电图的分解,并将其应用于 MU 尖峰序列的离线和实时估计。我们修改了互相关向量的计算方法,以提高梯度卷积核补偿(gCKC)算法的计算效率。具体来说,新的 fgCKC 算法除了当前梯度外,还考虑了过去的梯度。此外,通过滑动窗口对肌电图信号进行分割,以模拟实时分解,并在模拟和实验信号上验证了所提出的算法。在离线分解中,fgCKC 与 gCKC 具有相同的鲁棒性,在所有试验和受试者中平均灵敏度差异为 2.6±1.3%。然而,取决于 MU 的数量和信号的信噪比,fgCKC 的速度比 gCKC 快约 3 倍。在实时部分,在普通个人计算机(Intel(R) Core(TM) i5-12490F 3GHz,16GB 内存)上,每个肌电图信号窗口的处理平均仅需要 240ms。这些结果表明,fgCKC 通过显著减少处理时间实现了实时分解,为非侵入性神经元行为研究提供了更多可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验