Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
Nat Chem Biol. 2024 Jun;20(6):751-760. doi: 10.1038/s41589-024-01562-z. Epub 2024 Mar 13.
Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has the potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking the binding modes and motifs of natural TM interaction partners. Here, we demonstrate the design of de novo TM proteins targeting the erythropoietin receptor (EpoR) TM domain in a custom binding topology competitive with receptor homodimerization. The TM proteins expressed in mammalian cells complex with EpoR and inhibit erythropoietin-induced cell proliferation. In vitro, the synthetic TM domain complex outcompetes EpoR homodimerization. Structural characterization reveals that the complex involves the intended amino acids and agrees with our designed molecular model of antiparallel TM helices at 1:1 stoichiometry. Thus, membrane protein TM regions can now be targeted in custom-designed topologies.
跨膜(TM)域即使只有一个单一的跨度,也可以使用完全嵌入脂质的化学特征来执行复杂的生物学功能。计算设计有可能直接针对膜蛋白的功能 TM 区域生成定制的工具分子。到目前为止,设计的 TM 域靶向剂仅限于模拟天然 TM 相互作用伙伴的结合模式和基序。在这里,我们展示了针对促红细胞生成素受体(EpoR)TM 域的从头设计 TM 蛋白,其在与受体同源二聚化竞争的定制结合拓扑结构中具有靶向性。在哺乳动物细胞中表达的 TM 蛋白与 EpoR 复合,并抑制促红细胞生成素诱导的细胞增殖。在体外,合成的 TM 结构域复合物可与 EpoR 同源二聚体竞争。结构特征表明,该复合物涉及预期的氨基酸,并与我们设计的 1:1 化学计量比的平行 TM 螺旋分子模型一致。因此,现在可以针对膜蛋白 TM 区域进行定制设计的拓扑结构靶向。