Wichaiyo Surasak, Koonyosying Pimpisid, Morales Noppawan Phumala
Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
ACS Pharmacol Transl Sci. 2024 Feb 7;7(3):570-585. doi: 10.1021/acsptsci.3c00325. eCollection 2024 Mar 8.
Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.
弗林蛋白酶在几种生物分子的翻译后修饰中起主要作用,这些生物分子包括内源性激素、生长因子和细胞因子。最近的报告表明,弗林蛋白酶与人类的心脑血管疾病(CVD)有关。这篇综述描述了弗林蛋白酶及其底物在CVD中的可能致病作用。早期高血压和糖尿病与弗林蛋白酶呈负相关。弗林蛋白酶的减少可能通过降低B型利钠肽(BNP)的成熟度或减少膜(前)肾素受体(PRR)的脱落来促进高血压,而膜(前)肾素受体的脱落会促进肾素-血管紧张素-醛固酮系统(RAAS)的激活。在糖尿病中,弗林蛋白酶下调可能通过降低胰岛素受体的成熟度导致胰岛素抵抗。相反,其他CVD的进展与弗林蛋白酶的增加有关,包括血脂异常、动脉粥样硬化、缺血性中风、心肌梗死(MI)和心力衰竭。弗林蛋白酶的上调可能促进膜型1-基质金属蛋白酶(MT1-MMP)的成熟,MT1-MMP可切割低密度脂蛋白受体(LDLR),导致血脂异常。在动脉粥样硬化中,弗林蛋白酶水平升高可能会增强与炎症、细胞增殖以及细胞外基质(ECM)沉积和降解相关的几种底物的成熟。缺血性中风后的神经元细胞死亡也已证明与弗林蛋白酶底物有关(例如MT1-MMP、铁调素和血色素沉着病相关蛋白)。此外,弗林蛋白酶及其底物,包括肿瘤坏死因子-α(TNF-α)、内皮素-1(ET-1)和转化生长因子-β1(TGF-β1),能够介导MI和心力衰竭中的炎症、肥大和纤维化。综上所述,这些证据表明了弗林蛋白酶在CVD中的功能意义,并可能提示一种潜在的新型CVD治疗方式。