School of Psychology, Tom Reilly Building, Liverpool John Moore's University, Byrom Street, L3 3AF, Liverpool, UK.
Department of Computer Science, University of York, York, UK.
Behav Res Methods. 2024 Apr;56(4):3578-3588. doi: 10.3758/s13428-024-02377-5. Epub 2024 Mar 14.
The alcohol Stroop is a widely used task in addiction science to measure the theoretical concept of attentional bias (a selective attention to alcohol-related cues in the environment), which is thought to be associated with clinical outcomes (craving and consumption). However, recent research suggests findings from this task can be equivocal. This may be because the task has many different potential analysis pipelines, which increase researcher degrees of freedom when analysing data and reporting results. These analysis pipelines largely come from how outlying reaction times on the task are identified and handled (e.g. individual reaction times > 3 standard deviations from the mean are removed from the distribution; removal of all participant data if > 25% errors are made). We used specification curve analysis across two alcohol Stroop datasets using alcohol-related stimuli (one published and one novel) to examine the robustness of the alcohol Stroop effect to different analytical decisions. We used a prior review of this research area to identify 27 unique analysis pipelines. Across both data sets, the pattern of results was similar. The alcohol Stroop effect was present and largely robust to different analysis pipelines. Increased variability in the Stroop effect was observed when implementing outlier cut-offs for individual reaction times, rather than the removal of participants. Stricter outlier thresholds tended to reduce the size of the Stroop interference effect. These specification curve analyses are the first to examine the robustness of the alcohol Stroop to different analysis strategies, and we encourage researchers to adopt such analytical methods to increase confidence in their inferences across cognitive and addiction science.
酒精斯特鲁普任务是成瘾科学中广泛使用的一种任务,用于测量注意力偏向(对环境中与酒精相关的线索的选择性注意)的理论概念,该概念被认为与临床结果(渴望和消费)有关。然而,最近的研究表明,该任务的发现可能存在争议。这可能是因为该任务有许多不同的潜在分析管道,这增加了研究人员在分析数据和报告结果时的自由度。这些分析管道主要来自于如何识别和处理任务中的异常反应时间(例如,将任务中的个体反应时间>平均值的 3 个标准差从分布中删除;如果超过 25%的参与者出现错误,则删除所有参与者的数据)。我们使用两个酒精斯特鲁普数据集(一个已发表,一个新的)进行了规范曲线分析,以检查不同分析决策对酒精斯特鲁普效应的稳健性。我们使用对该研究领域的前期综述来确定 27 种独特的分析管道。在两个数据集上,结果模式相似。酒精斯特鲁普效应存在,并且在很大程度上对不同的分析管道具有稳健性。当对个体反应时间实施异常值截止值时,而不是删除参与者时,观察到斯特鲁普效应的可变性增加。严格的异常值阈值往往会减小斯特鲁普干扰效应的大小。这些规范曲线分析首次检查了不同分析策略对酒精斯特鲁普的稳健性,我们鼓励研究人员采用这种分析方法,以提高其在认知和成瘾科学中的推论的可信度。