Grinderslev Jakob B, Andersson Mikael S, Trump Benjamin A, Zhou Wei, Udovic Terrence J, Karlsson Maths, Jensen Torben R
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus 8000, Denmark.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden.
J Phys Chem C Nanomater Interfaces. 2021;125(28). doi: 10.1021/acs.jpcc.1c03629.
Complex metal hydrides are a fascinating and continuously expanding class of materials with many properties relevant for solid-state hydrogen and ammonia storage and solid-state electrolytes. The crystal structures are often investigated using powder X-ray diffraction (PXD), which can be ambiguous. Here, we revisit the crystal structure of Y(BD)·3ND with the use of neutron diffraction, which, in comparison to previous PXD studies, provides accurate information about the D positions in the compound. Upon cooling to 10 K, the compound underwent a polymorphic transition, and a new monoclinic low-temperature polymorph denoted as -Y(BD)·3ND was discovered. Furthermore, the series of Y(BH)·NH ( = 0, 3, and 7) were also investigated with inelastic neutron scattering and infrared spectroscopy techniques, which provided information of the local coordination environment of the BH and NH groups and unique insights into the hydrogen dynamics. Partial deuteration using ND in Y(BH)·ND ( = 3 and 7) allowed for an unambiguous assignment of the vibrational bands corresponding to the NH and BH in Y(BH)·NH, due to the much larger neutron scattering cross section of H compared to D. The vibrational spectra of Y(BH)·NH could roughly be divided into three regions: (i) below 55 meV, containing mainly BH librational motions, (ii) 55-130 meV, containing mainly NH librational motions, and (iii) above 130 meV, containing B-H and N-H bending and stretching motions.
复杂金属氢化物是一类迷人且不断发展的材料,具有许多与固态氢和氨存储以及固态电解质相关的特性。其晶体结构通常使用粉末X射线衍射(PXD)进行研究,但这种方法可能存在模糊性。在此,我们利用中子衍射重新研究了Y(BD)·3ND的晶体结构,与之前的PXD研究相比,中子衍射能提供有关该化合物中D位置的准确信息。冷却至10 K时,该化合物发生了多晶型转变,并发现了一种新的单斜低温多晶型,记为 -Y(BD)·3ND。此外,还使用非弹性中子散射和红外光谱技术对Y(BH)·NH系列(n = 0、3和7)进行了研究,这些技术提供了BH和NH基团局部配位环境的信息,并对氢动力学有了独特的见解。在Y(BH)·ND(n = 3和7)中使用ND进行部分氘代,由于H与D相比具有大得多的中子散射截面,从而能够明确归属Y(BH)·NH中与NH和BH相对应的振动带。Y(BH)·NH的振动光谱大致可分为三个区域:(i)低于55 meV,主要包含BH的摆动运动;(ii)55 - 130 meV,主要包含NH的摆动运动;(iii)高于130 meV,包含B - H和N - H的弯曲和拉伸运动。