Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
J Biomed Mater Res A. 2024 Sep;112(9):1494-1505. doi: 10.1002/jbm.a.37705. Epub 2024 Mar 15.
RNA-based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP-mediated mRNA translation. Here, we optimized IL tail length for LNP-mediated delivery of three different mRNA cargos. Using C12-200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10-200, an IL with shorter tail lengths than C12-200, enhance liver transfection by over 10-fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13-200 IL led to EPO translation at levels similar to the C12-200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9-200 IL induced over three times the quantity of indels compared with the C12-200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.
基于 RNA 的疗法在预防和治疗多种疾病方面已经取得了进展。然而,它们的脆弱性和免疫原性需要药物载体。脂质纳米颗粒 (LNP) 已成为 RNA 疗法的主要递送载体。LNP 的一个重要组成部分是可离子化脂质 (IL),它在内涵体的酸性环境中质子化,促使货物释放到细胞质中。目前,越来越多的证据表明,IL 脂质尾巴的结构显著影响 LNP 介导的 mRNA 翻译的疗效。在这里,我们优化了 IL 尾巴的长度,以实现三种不同 mRNA cargos 的 LNP 介导递送。我们使用 C12-200(一种标准的 IL)作为模型,设计了一个具有不同尾巴长度的 IL 文库,并在体内评估了它们的效力。我们证明,脂溶性的微小变化可以极大地增加或降低 mRNA 的翻译。我们确定,用萤火虫荧光素酶 mRNA(1929 个碱基对)和 C10-200(一种比 C12-200 短的 IL)制成的 LNP 可将肝脏转染提高 10 倍以上。此外,我们发现不同的 IL 尾巴长度对于转染不同大小的 mRNA cargos 的 LNP 是理想的。用促红细胞生成素 (EPO)(负责刺激红细胞生成)mRNA(858 个碱基对)和 C13-200 IL 制成的 LNP 可使 EPO 的翻译水平与 C12-200 LNP 相似。用 Cas9 mRNA(4521 个碱基对)和 C9-200 IL 制成的 LNP 引起的插入缺失数量比 C12-200 LNP 多三倍以上。我们的研究结果表明,较短的 IL 尾巴可能导致更大的 mRNA 包裹的 LNP 转染率更高,而较长的 IL 尾巴可能更有效地传递较小的 mRNA cargos。我们设想,该项目的结果可用于未来 RNA 治疗的下一代 LNP 递送系统的设计标准。