Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
J Mol Evol. 2024 Apr;92(2):121-137. doi: 10.1007/s00239-024-10159-y. Epub 2024 Mar 15.
Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.
蓝藻因其在水生生态系统中的关键作用而受到认可,是初级生产者和固氮过程中的主要作用者。目前,蓝藻研究的主要重点是更详细地了解这些已确立的生态系统功能。然而,它们对其他关键生物地球化学循环的参与和影响仍未得到充分研究。造成这一知识差距的部分原因是在受控实验室条件下培养蓝藻的相关挑战,以及对其特定生长要求的有限理解。部分可以通过非培养方法来解决,这些方法可以揭示蓝藻物种的基因组潜力,并回答关于其他关键生物地球化学功能进化的更深刻问题。在这项研究中,我们从印度咸水泻湖(Chilika Lake)提取的环境 DNA 中生成的宏基因组数据中组装了 83 个蓝藻基因组。我们对这些宏基因组组装基因组(MAGs)进行了分类,并发现其中约 92.77%在物种水平上是新的基因组。然后,我们使用 KEGG Orthology 为这些蓝藻 MAGs 注释了所有编码功能。有趣的是,我们使用 nirBD 和 dsyB 基因作为标记,在多个 MAGs 中发现了蓝藻中以前未报道的两种功能,即异化硝酸盐还原为铵(DNRA)和二甲基巯基丙酸(DMSP)合成。我们在几个公开可用的蓝藻分离物基因组中验证了它们的存在。此外,我们还确定了物种和标记基因的进化模式之间的不一致性,并阐明了这些差异的根本原因。这项研究扩展了我们对蓝藻对沿海咸水生态系统生物地球化学循环贡献的整体理解。