Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Wellington Road, Clayton, 3800, Victoria, Australia.
Intensive Care Unit, Alfred Hospital, 89 Commercial Road, Melbourne, 3004, Victoria, Australia.
Comput Biol Med. 2024 Apr;172:108263. doi: 10.1016/j.compbiomed.2024.108263. Epub 2024 Mar 11.
Despite advances in Venoarterial Extracorporeal Membrane Oxygenation (VA-ECMO), a significant mortality rate persists due to complications. The non-physiological blood flow dynamics of VA-ECMO may lead to neurological complications and organ ischemia. Continuous retrograde high-flow oxygenated blood enters through a return cannula placed in the femoral artery which opposes the pulsatile deoxygenated blood ejected by the left ventricle (LV), which impacts upper body oxygenation and subsequent hyperoxemia. The complications underscore the critical need to comprehend the impact of VA-ECMO support level and return cannula size, as mortality remains a significant concern.
The aim of this study is to predict and provide insights into the complications associated with VA-ECMO using computational fluid dynamics (CFD) simulations. These complications will be assessed by characterising blood flow and emboli transport patterns through a comprehensive analysis of the influence of VA-ECMO support levels and arterial return cannula sizes.
Patient-specific 3D aortic and major branch models, derived from a male patient's CT scan during VA-ECMO undergoing respiratory dysfunction, were analyzed using CFD. The investigation employed species transport and discrete particle tracking models to study ECMO blood (oxygenated) mixing with LV blood (deoxygenated) and to trace emboli transport patterns from potential sources (circuit, LV, and aorta wall). Two cannula sizes (15 Fr and 19 Fr) were tested alongside varying ECMO pump flow rates (50%, 70%, and 90% of the total cardiac output).
Cannula size did not significantly affect oxygen transport. At 90% VA-ECMO support, all arteries distal to the aortic arch achieved 100% oxygen saturation. As support level decreased, oxygen transport to the upper body also decreased to a minimum saturation of 73%. Emboli transport varied substantially between emboli origin and VAECMO support level, with the highest risk of cerebral emboli coming from the LV with a 15 Fr cannula at 90% support.
Arterial return cannula sizing minimally impacted blood oxygen distribution; however, it did influence the distribution of emboli released from the circuit and aortic wall. Notably, it was the support level alone that significantly affected the mixing zone of VA-ECMO and cardiac blood, subsequently influencing the risk of embolization of the cardiogenic source and oxygenation levels across various arterial branches.
尽管体外膜肺氧合(VA-ECMO)技术取得了进展,但由于并发症的存在,死亡率仍然很高。VA-ECMO 的非生理血流动力学可能导致神经并发症和器官缺血。通过放置在股动脉中的回输管,连续逆行高流量充氧血液进入,与左心室(LV)射出的脉动脱氧血液相反,这会影响上半身的氧合和随后的高氧血症。这些并发症突出表明,迫切需要了解 VA-ECMO 支持水平和回输管尺寸的影响,因为死亡率仍然是一个重大问题。
本研究旨在使用计算流体动力学(CFD)模拟预测和深入了解与 VA-ECMO 相关的并发症。通过全面分析 VA-ECMO 支持水平和动脉回输管尺寸的影响,评估这些并发症。
使用 CFD 分析了从一名在 VA-ECMO 期间因呼吸功能障碍进行 CT 扫描的男性患者获得的特定于患者的 3D 主动脉和主要分支模型。该研究采用物种传输和离散粒子跟踪模型,研究 ECMO 血液(充氧)与 LV 血液(脱氧)的混合,并从潜在来源(回路、LV 和主动脉壁)追踪栓塞物的运输模式。测试了两种不同的套管尺寸(15Fr 和 19Fr)和不同的 ECMO 泵流量(总心输出量的 50%、70%和 90%)。
套管尺寸对氧输送没有显著影响。在 90%VA-ECMO 支持下,主动脉弓远端的所有动脉均达到 100%氧饱和度。随着支持水平的降低,上半身的氧输送也降低到最小饱和度 73%。栓塞物的运输在栓塞物起源和 VAECMO 支持水平之间有很大差异,在 90%支持下,15Fr 套管的 LV 是大脑栓塞的最高风险来源。
动脉回输管的尺寸对血液氧合分布的影响最小;然而,它确实影响了从回路和主动脉壁释放的栓塞物的分布。值得注意的是,只有支持水平才会显著影响 VA-ECMO 和心脏血液的混合区,进而影响心源栓塞和各动脉分支氧合水平的风险。