Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
Eur J Nucl Med Mol Imaging. 2024 Jul;51(8):2283-2292. doi: 10.1007/s00259-024-06675-0. Epub 2024 Mar 16.
Functional positron emission tomography (fPET) with [F]FDG allows quantification of stimulation-induced changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for an input function.
We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed Tetris® during a [F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), and compared them, region and whole-brain-wise.
We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively.
The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances its applicability in research and clinical settings.
功能正电子发射断层扫描(fPET)结合 [F]FDG 可实现葡萄糖代谢刺激诱导变化的定量分析,而无需考虑神经血管耦合。然而,金标准的定量分析需要进行有创性的动脉采血,限制了其广泛应用。本研究介绍了一种无需输入函数的新型 fPET 方法。
我们使用两个数据集(DS)验证了该方法。对于 DS1,52 名志愿者(23.2±3.3 岁,24 名女性)在 [F]FDG fPET 扫描期间进行 Tetris®(推注+持续输注)。对于 DS2,18 名参与者(24.2±4.3 岁,8 名女性)进行睁眼/手指敲击任务(持续输注)。采用广义线性模型(GLM)评估代谢的任务特异性变化,并采用 Patlak 图作为参考量化脑葡萄糖代谢率(CMRGlu)。然后,我们估计了简化的结果参数,包括 GLM 的β值和信号变化百分比(%SC),并进行了区域和全脑比较。
我们发现,与 DS2 相比,DS1 与参考值的一致性更高。两个数据集均显示,区域特异性任务的β值估计与 CMRGlu 之间存在很强的相关性(r=0.763…0.912)。β值的%SC 与 CMRGlu 的%SC 具有很强的一致性(r=0.909…0.999)。平均激活图显示,CMRGlu 和β值的估计之间具有高度的空间相似性(Dice=0.870…0.979),以及%SC(Dice=0.932…0.997)。
该非侵入性方法无需采血即可可靠地估计葡萄糖代谢的任务特异性变化。这简化了 fPET,但也无法对基线代谢进行定量分析。这种简化增强了其在研究和临床环境中的适用性。