Suppr超能文献

交通运输行业能耗及相关排放的情景分析——以陕西省为例。

Scenario analysis of energy consumption and related emissions in the transportation industry-a case study of Shaanxi Province.

机构信息

College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2024 Apr;31(17):26052-26075. doi: 10.1007/s11356-024-32857-2. Epub 2024 Mar 16.

Abstract

In the context of pursuing carbon neutrality and balancing the use of fossil fuels with renewable energy, the transportation industry faces the challenge of accurately predicting energy demand, related emissions, and assessing the effectiveness of energy technologies and policies. This is crucial for formulating energy management plans and reducing carbon dioxide (CO) and atmospheric pollutant emissions. Currently, research on energy consumption and emission forecasting primarily relies on energy consumption quantities and emission factors, which lack precision. This study employs the low emissions analysis platform (LEAP) model, utilizing a "bottom-up" modeling approach combined with scenario analysis to predict and analyze the energy demand and related emissions in the transportation industry. Compared to previous studies, the methodological framework proposed in this research offers higher precision and can explore energy-saving and emission-reduction pathways for different modes of transport, providing a valuable energy forecasting tool for transport policy formulation in other regions. The forecast results indicate that under the business-as-usual (BAU) scenario, by 2049, the energy consumption and related emissions in Shaanxi Province's transportation industry are expected to increase by 1.15 to 1.85 times compared to the baseline year. In the comprehensive (CP) scenario, the industry is projected to reach a carbon peak around 2033. The study also finds that energy consumption and emissions predominantly originate from private passenger vehicles, highway freight, and civil aviation passenger, which have the greatest potential for emission reduction under the transport structure optimized (TSO) scenario. Therefore, policymakers should consider regional development characteristics, combine different transportation modes, and specifically analyze the emission reduction potential of the transportation industry in various regions, formulating corresponding reduction policies accordingly.

摘要

在追求碳中和和平衡化石燃料与可再生能源的使用的背景下,交通运输行业面临着准确预测能源需求、相关排放以及评估能源技术和政策效果的挑战。这对于制定能源管理计划和减少二氧化碳(CO)和大气污染物排放至关重要。目前,能源消耗和排放预测的研究主要依赖于能源消耗数量和排放因子,这些方法缺乏准确性。本研究采用低排放分析平台(LEAP)模型,采用“自下而上”的建模方法结合情景分析来预测和分析交通运输行业的能源需求和相关排放。与以往的研究相比,本研究提出的方法论框架提供了更高的精度,并且可以探索不同交通模式的节能和减排途径,为其他地区制定交通政策提供了有价值的能源预测工具。预测结果表明,在“照常情景”下,到 2049 年,陕西省交通运输行业的能源消耗和相关排放预计将比基准年增加 1.15 至 1.85 倍。在“综合情景”下,该行业预计将在 2033 年左右达到碳峰值。研究还发现,能源消耗和排放主要来自私人乘用车、公路货运和民用航空旅客,在优化的交通结构(TSO)情景下,这些领域具有最大的减排潜力。因此,政策制定者应考虑到区域发展特点,结合不同的交通模式,并具体分析各个地区交通运输行业的减排潜力,制定相应的减排政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验