Faculty of Engineering, Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey.
Bioengineering Department, Süleyman Demirel University, Isparta, Turkey.
J Comput Chem. 2024 Jul 5;45(18):1530-1539. doi: 10.1002/jcc.27335. Epub 2024 Mar 15.
Inhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC values, and their efficacy was gauged using metrics including R, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(O)N) and PubChemFP6978 (C(O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(O)NCC), PubChemFP601 (C(O)OCC), and PubChemFP432 (C(O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(O)OCCN), PubChemFP791 (C(O)OCCC), PubChemFP696 (C(O)OCCCC), PubChemFP335 (C(O)NCCN), PubChemFP580 (C(O)NCCCN), and PubChemFP180 (C(O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.
抑制碳酸酐酶 I(CA I)和碳酸酐酶 II(CA II)酶呈现出一种有潜力的方法,可以解决神经系统疾病,如青光眼和阿尔茨海默病。我们的研究探索了利用可解释的人工智能(XAI)揭示 CA I 和 CA II 抑制剂中固有的分子特征。这些抑制剂的 PubChem 分子指纹图谱来自 ChEMBL 数据库,经过详细的 XAI 分析。该研究包括使用 IC 值训练 10 个回归模型,并使用 R、RMSE 和所需时间等指标来评估其功效。决策树回归器算法是表现最佳的算法(R:0.93,RMSE:0.43,所需时间:0.07)。此外,PFI 方法揭示了 CA I 抑制剂的关键分子特征,特别是 PubChemFP432(C(O)N)和 PubChemFP6978(C(O)O)。SHAP 分析强调了 PubChemFP539(C(O)NCC)、PubChemFP601(C(O)OCC)和 PubChemFP432(C(O)N)等属性在 CA I 抑制剂中的重要性。同样,CA II 抑制剂的特征包括 PubChemFP528(C(O)OCCN)、PubChemFP791(C(O)OCCC)、PubChemFP696(C(O)OCCCC)、PubChemFP335(C(O)NCCN)、PubChemFP580(C(O)NCCCN)和 PubChemFP180(C(O)NCCC),这些特征是通过 SHAP 分析确定的。磺酰胺基团(S)、芳环(A)和氢键基团(H)通过 XAI 方法对 CA I 和 CA II 酶的活性和 IC 值产生了重大影响。这些对 CA I 和 CA II 抑制剂的深入了解有望指导未来的药物发现工作,为创新的治疗干预措施提供指导。