Suppr超能文献

人工智能在妊娠早期成像中的应用:系统评价。

Artificial Intelligence in Imaging in the First Trimester of Pregnancy: A Systematic Review.

机构信息

Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium,

Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium.

出版信息

Fetal Diagn Ther. 2024;51(4):343-356. doi: 10.1159/000538243. Epub 2024 Mar 18.

Abstract

INTRODUCTION

Ultrasonography in the first trimester of pregnancy offers an early screening tool to identify high risk pregnancies. Artificial intelligence (AI) algorithms have the potential to improve the accuracy of diagnosis and assist the clinician in early risk stratification.

OBJECTIVE

The objective of the study was to conduct a systematic review of the use of AI in imaging in the first trimester of pregnancy.

METHODS

We conducted a systematic literature review by searching in computerized databases PubMed, Embase, and Google Scholar from inception to January 2024. Full-text peer-reviewed journal publications written in English on the evaluation of AI in first-trimester pregnancy imaging were included. Review papers, conference abstracts, posters, animal studies, non-English and non-peer-reviewed articles were excluded. Risk of bias was assessed by using PROBAST.

RESULTS

Of the 1,595 non-duplicated records screened, 27 studies were included. Twelve studies focussed on segmentation, 8 on plane detection, 6 on image classification, and one on both segmentation and classification. Five studies included fetuses with a gestational age of less than 10 weeks. The size of the datasets was relatively small as 16 studies included less than 1,000 cases. The models were evaluated by different metrics. Duration to run the algorithm was reported in 12 publications and ranged between less than one second and 14 min. Only one study was externally validated.

CONCLUSION

Even though the included algorithms reported a good performance in a research setting on testing datasets, further research and collaboration between AI experts and clinicians is needed before implementation in clinical practice.

摘要

简介

妊娠早期超声检查提供了一种早期筛查工具,可用于识别高危妊娠。人工智能 (AI) 算法有可能提高诊断的准确性,并帮助临床医生进行早期风险分层。

目的

本研究旨在对妊娠早期成像中 AI 的使用进行系统评价。

方法

我们通过在计算机数据库 PubMed、Embase 和 Google Scholar 中进行系统文献检索,从成立到 2024 年 1 月进行了研究。纳入了评估妊娠早期成像中 AI 的同行评审英文全文期刊出版物。排除综述文章、会议摘要、海报、动物研究、非英文和非同行评审文章。使用 PROBAST 评估偏倚风险。

结果

在筛选出的 1595 份非重复记录中,有 27 项研究被纳入。12 项研究侧重于分割,8 项研究侧重于平面检测,6 项研究侧重于图像分类,1 项研究同时涉及分割和分类。有 5 项研究纳入了妊娠 10 周以下的胎儿。数据集的规模相对较小,有 16 项研究纳入的病例少于 1000 例。模型使用不同的指标进行评估。在 12 篇出版物中报告了运行算法所需的时间,范围从不到一秒到 14 分钟不等。只有一项研究进行了外部验证。

结论

尽管纳入的算法在测试数据集的研究环境中报告了良好的性能,但在将其应用于临床实践之前,还需要 AI 专家和临床医生之间进行进一步的研究和合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dde/11318576/45741f974afe/fdt-2024-0051-0004-538243_F01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验