Suppr超能文献

研究单细胞的时间动态:表达、谱系和调控网络。

Studying temporal dynamics of single cells: expression, lineage and regulatory networks.

作者信息

Pan Xinhai, Zhang Xiuwei

机构信息

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

出版信息

Biophys Rev. 2023 Aug 4;16(1):57-67. doi: 10.1007/s12551-023-01090-5. eCollection 2024 Feb.

Abstract

UNLABELLED

Learning how multicellular organs are developed from single cells to different cell types is a fundamental problem in biology. With the high-throughput scRNA-seq technology, computational methods have been developed to reveal the temporal dynamics of single cells from transcriptomic data, from phenomena on cell trajectories to the underlying mechanism that formed the trajectory. There are several distinct families of computational methods including Trajectory Inference (TI), Lineage Tracing (LT), and Gene Regulatory Network (GRN) Inference which are involved in such studies. This review summarizes these computational approaches which use scRNA-seq data to study cell differentiation and cell fate specification as well as the advantages and limitations of different methods. We further discuss how GRNs can potentially affect cell fate decisions and trajectory structures.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12551-023-01090-5.

摘要

未标注

了解多细胞器官如何从单细胞发育成不同细胞类型是生物学中的一个基本问题。借助高通量单细胞RNA测序(scRNA-seq)技术,已开发出计算方法来从转录组数据中揭示单细胞的时间动态,从细胞轨迹上的现象到形成轨迹的潜在机制。有几个不同的计算方法家族,包括轨迹推断(TI)、谱系追踪(LT)和基因调控网络(GRN)推断,它们都参与了此类研究。本综述总结了这些利用scRNA-seq数据研究细胞分化和细胞命运决定的计算方法,以及不同方法的优缺点。我们进一步讨论了基因调控网络如何可能影响细胞命运决定和轨迹结构。

补充信息

在线版本包含可在10.1007/s12551-023-01090-5获取的补充材料。

相似文献

1
Studying temporal dynamics of single cells: expression, lineage and regulatory networks.
Biophys Rev. 2023 Aug 4;16(1):57-67. doi: 10.1007/s12551-023-01090-5. eCollection 2024 Feb.
2
Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
Bioinformatics. 2020 Sep 15;36(18):4774-4780. doi: 10.1093/bioinformatics/btaa576.
4
Unraveling Root Development Through Single-Cell Omics and Reconstruction of Gene Regulatory Networks.
Front Plant Sci. 2021 May 4;12:661361. doi: 10.3389/fpls.2021.661361. eCollection 2021.
6
Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
Bioinformatics. 2022 Sep 30;38(19):4522-4529. doi: 10.1093/bioinformatics/btac559.
7
A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing.
Genes Genomics. 2024 Jan;46(1):1-11. doi: 10.1007/s13258-023-01473-8. Epub 2023 Nov 30.
9
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.

引用本文的文献

2
Biophysical Reviews: peering into 2024.
Biophys Rev. 2024 Feb 20;16(1):1-7. doi: 10.1007/s12551-024-01182-w. eCollection 2024 Feb.
3
: Quantitative methods to decipher cellular heterogeneity - from single-cell to spatial omic methods.
Biophys Rev. 2024 Jan 30;16(1):11-12. doi: 10.1007/s12551-024-01180-y. eCollection 2024 Feb.

本文引用的文献

2
Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics.
Nat Methods. 2023 Sep;20(9):1368-1378. doi: 10.1038/s41592-023-01971-3. Epub 2023 Aug 3.
4
A relay velocity model infers cell-dependent RNA velocity.
Nat Biotechnol. 2024 Jan;42(1):99-108. doi: 10.1038/s41587-023-01728-5. Epub 2023 Apr 3.
5
Dissecting cell identity via network inference and in silico gene perturbation.
Nature. 2023 Feb;614(7949):742-751. doi: 10.1038/s41586-022-05688-9. Epub 2023 Feb 8.
6
scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference.
Bioinform Adv. 2023 Jan 12;3(1):vbad003. doi: 10.1093/bioadv/vbad003. eCollection 2023.
7
UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference.
Nat Commun. 2022 Nov 3;13(1):6586. doi: 10.1038/s41467-022-34188-7.
8
Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction.
Nat Biotechnol. 2023 Mar;41(3):387-398. doi: 10.1038/s41587-022-01476-y. Epub 2022 Oct 13.
9
Functional inference of gene regulation using single-cell multi-omics.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100166. Epub 2022 Aug 4.
10
Inferring and perturbing cell fate regulomes in human brain organoids.
Nature. 2023 Sep;621(7978):365-372. doi: 10.1038/s41586-022-05279-8. Epub 2022 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验