Suppr超能文献

使用机器学习模型进行人工智能驱动的轻型β地中海贫血和缺铁性贫血诊断。

Artificial intelligence-driven diagnosis of β-thalassemia minor & iron deficiency anemia using machine learning models.

作者信息

Uçucu Süheyl, Azik Fatih

机构信息

Ministry of Public Health Care Laboratory, Department of Medical Biohemistry, Muğla, Turkey.

Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Hematology-Oncology, Muğla, Turkey.

出版信息

J Med Biochem. 2024 Jan 25;43(1):11-18. doi: 10.5937/jomb0-38779.

Abstract

BACKGROUND

Iron deficiency anemia (IDA) and b-thalassemia minor (BTM) are the two most common causes of microcytic anemia, and although these conditions do not share many symptoms, differential diagnosis by blood tests is a time-consuming and expensive process. CBC can be used to diagnose anemia, but without advanced techniques, it cannot differentiate between iron deficiency anemia and BTM. This makes the differential diagnosis of IDA and BTM costly, as it requires advanced techniques to differentiate between the two conditions. This study aims to develop a model to differentiate IDA from BTM using an automated machine-learning method using only CBC data.

METHODS

This retrospective study included 396 individuals, consisting of 216 IDAs and 180 BTMs. The work was divided into three parts. The first section focused on the individual effects of hematological parameters on the differentiation of IDA and BTM. The second part discusses traditional methods and discriminant indices used in diagnosis. In the third section, models developed using artificial neural networks (ANN) and decision trees are analysed and compared with the methods used in the first two sections.

摘要

背景

缺铁性贫血(IDA)和轻型β地中海贫血(BTM)是小细胞性贫血最常见的两个病因,尽管这两种病症没有许多共同症状,但通过血液检查进行鉴别诊断是一个耗时且昂贵的过程。全血细胞计数(CBC)可用于诊断贫血,但没有先进技术的情况下,它无法区分缺铁性贫血和轻型β地中海贫血。这使得缺铁性贫血和轻型β地中海贫血的鉴别诊断成本高昂,因为需要先进技术来区分这两种病症。本研究旨在开发一种仅使用全血细胞计数数据的自动化机器学习方法,以区分缺铁性贫血和轻型β地中海贫血。

方法

这项回顾性研究纳入了396名个体,包括216名缺铁性贫血患者和180名轻型β地中海贫血患者。该工作分为三个部分。第一部分聚焦于血液学参数对缺铁性贫血和轻型β地中海贫血鉴别的个体影响。第二部分讨论诊断中使用的传统方法和判别指标。在第三部分,分析使用人工神经网络(ANN)和决策树开发的模型,并与前两部分使用的方法进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e62/10943455/6ab8f492cfc0/jomb-43-1-2401011U-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验