School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China.
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Appl Microbiol Biotechnol. 2024 Mar 18;108(1):267. doi: 10.1007/s00253-024-13108-3.
ADP-activated β-D-manno-heptoses (ADP-β-D-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-D-glycero-β-D-manno-heptose (ADP-D,D-manno-heptose) and its C-6'' epimer, ADP-L-glycero-β-D-manno-heptose (ADP-L,D-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-D,D-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-β-D-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-D,D-manno-heptose and the epimerase that converts it to ADP-L,D-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that β-D-mannose 1-phosphate, but not α-D-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldE (from V. cholerae) and HldE (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldE and HldE together with the E. coli-derived HldE were thus carried out using β-D-mannose 1-phosphate as a mimic sugar substrate. Overall, our works suggest that V. cholerae and V. parahaemolyticus are capable of synthesizing ADP-β-D-manno-heptoses and lay a foundation for further physiological function explorations on manno-heptose metabolism in Vibrio strains. KEY POINTS: • Vibrio strains adopt the same biosynthetic pathway as E. coli in synthesizing ADP-β-D-manno-heptoses. • HldEs from two Vibrio strains and E. coli could activate β-D-mannose 1-phosphate to ADP-β-D-mannose. • Comparable nucleotidyltransfer efficiencies were observed in the kinetic studies of HldEs.
ADP-激活的β-D-甘露庚糖(ADP-β-D-manno-heptoses)是革兰氏阴性菌脂多糖内核心生物合成的前体。最近,ADP-D-甘油-β-D-甘露庚糖(ADP-D,D-manno-heptose)及其 C-6'' 差向异构体 ADP-L-甘油-β-D-甘露庚糖(ADP-L,D-manno-heptose)被鉴定为有效的病原体相关分子模式(PAMPs),可引发强烈的先天免疫反应。尽管在几种不同的致病性革兰氏阴性菌中已经研究了 ADP-D,D-manno-heptose 的产生,但目前对弧菌属菌株 ADP-β-D-manno-heptose 生物合成的了解仍然有限。在这里,我们从霍乱弧菌(引起大流行霍乱的病原体)和副溶血弧菌(引起肠胃炎和伤口感染等临床表现的非霍乱病原体)中鉴定了 ADP-D,D-manno-heptose 的生物合成酶和将其转化为 ADP-L,D-manno-heptose 的差向异构酶,同时与大肠杆菌中的同工酶进行了比较。此外,我们发现只有β-D-甘露糖 1-磷酸而不是α-D-甘露糖 1-磷酸可以被二功能激酶/核苷酸转移酶 HldE(来自霍乱弧菌)和 HldE(来自副溶血弧菌)的核苷酸转移酶结构域激活为其 ADP 形式。因此,使用β-D-甘露糖 1-磷酸作为模拟糖底物对 HldE 和 HldE 的核苷酸转移酶结构域以及源自大肠杆菌的 HldE 进行了动力学分析。总的来说,我们的工作表明霍乱弧菌和副溶血弧菌能够合成 ADP-β-D-manno-heptoses,并为进一步探索弧菌属菌株中甘露庚糖代谢的生理功能奠定了基础。 关键点: • 两种弧菌菌株和大肠杆菌采用相同的生物合成途径合成 ADP-β-D-manno-heptoses。 • 来自两种弧菌菌株和大肠杆菌的 HldE 可以将β-D-甘露糖 1-磷酸激活为 ADP-β-D-manno-heptose。 • 在 HldE 的动力学研究中观察到可比的核苷酸转移效率。