Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde).
Department of Radiology, The First People's Hospital of Foshan, Foshan.
Int J Surg. 2024 Jul 1;110(7):4310-4319. doi: 10.1097/JS9.0000000000001335.
Microsatellite instability (MSI) is associated with treatment response and prognosis in patients with rectal cancer (RC). However, intratumoral heterogeneity limits MSI testing in patients with RC. The authors developed a subregion radiomics model based on multiparametric MRI to preoperatively assess high-risk subregions with MSI and predict the MSI status of patients with RC.
This retrospective study included 475 patients (training cohort, 382; external test cohort, 93) with RC from two participating hospitals between April 2017 and June 2023. In the training cohort, subregion radiomic features were extracted from multiparametric MRI, which included T2-weighted, T1-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging. MSI-related subregion radiomic features, classical radiomic features, and clinicoradiological variables were gathered to build five predictive models using logistic regression. Kaplan-Meier survival analysis was conducted to explore the prognostic information.
Among the 475 patients [median age, 64 years (interquartile range, IQR: 55-70 years); 304 men and 171 women], the prevalence of MSI was 11.16% (53/475). The subregion radiomics model outperformed the classical radiomics and clinicoradiological models in both training [area under the curve (AUC)=0.86, 0.72, and 0.59, respectively] and external test cohorts (AUC=0.83, 0.73, and 0.62, respectively). The subregion-clinicoradiological model combining clinicoradiological variables and subregion radiomic features performed the optimal, with AUCs of 0.87 and 0.85 in the training and external test cohorts, respectively. The 3-year disease-free survival rate of MSI groups predicted based on the model was higher than that of the predicted microsatellite stability groups in both patient cohorts (training, P =0.032; external test, P =0.046).
The authors developed and validated a model based on subregion radiomic features of multiparametric MRI to evaluate high-risk subregions with MSI and predict the MSI status of RC preoperatively, which may assist in individualized treatment decisions and positioning for biopsy.
微卫星不稳定性(MSI)与直肠癌(RC)患者的治疗反应和预后相关。然而,肿瘤内异质性限制了 RC 患者的 MSI 检测。作者开发了一种基于多参数 MRI 的亚区放射组学模型,以术前评估 MSI 高危亚区并预测 RC 患者的 MSI 状态。
这项回顾性研究纳入了 2017 年 4 月至 2023 年 6 月期间来自两家参与医院的 475 例 RC 患者(训练队列 382 例,外部测试队列 93 例)。在训练队列中,从多参数 MRI 中提取亚区放射组学特征,包括 T2 加权、T1 加权、弥散加权和对比增强 T1 加权成像。收集 MSI 相关的亚区放射组学特征、经典放射组学特征和临床放射学变量,使用逻辑回归建立五个预测模型。进行 Kaplan-Meier 生存分析以探索预后信息。
在 475 例患者中[中位年龄 64 岁(四分位距:55-70 岁);304 名男性,171 名女性],MSI 的患病率为 11.16%(53/475)。在训练队列和外部测试队列中,亚区放射组学模型均优于经典放射组学和临床放射学模型(AUC:0.86、0.72 和 0.59)。结合临床放射学变量和亚区放射组学特征的亚区-临床放射学模型表现最佳,在训练队列和外部测试队列中的 AUC 分别为 0.87 和 0.85。基于该模型预测的 MSI 组的 3 年无病生存率高于两个患者队列中预测的微卫星稳定组(训练队列,P=0.032;外部测试队列,P=0.046)。
作者开发并验证了一种基于多参数 MRI 亚区放射组学特征的模型,以评估 MSI 高危亚区并预测 RC 患者的 MSI 状态,这可能有助于辅助个体化治疗决策和活检定位。