Research Biology School, Australian National University, Canberra, ACT, Australia.
Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia.
PLoS Genet. 2024 Mar 18;20(3):e1011207. doi: 10.1371/journal.pgen.1011207. eCollection 2024 Mar.
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
永久性的杂合基因座,如性别或交配相容性区域,通常表现出重组抑制和基因组退化的信号。在担子菌中,有两个不同的基因座赋予交配相容性。这些基因座编码同源域(HD)转录因子和信息素受体(Pra)-配体等位基因对。迄今为止,对于锈菌目(Pucciniales)中必需的生物营养担子菌,缺乏关于基因组水平交配型(MAT)基因座的分析,该目包含严重的农业植物病原体。在这里,我们专注于感染燕麦和小麦的四个 Puccinia 物种,包括 P. coronata f. sp. avenae、P. graminis f. sp. tritici、P. triticina 和 P. striiformis f. sp. tritici。MAT 基因座位于两个独立的染色体上,支持锈菌目中的四极交配相容性系统的先前假设。在所有四个物种中,HD 基因是多等位基因的,而 PR 基因座似乎是双等位基因的,除了 P. graminis f. sp. tritici,它可能有多个等位基因。HD 基因座在其宏观同线性中基本保守,无论是在物种内部还是之间,没有强烈的重组抑制信号。然而,靠近 PR 基因座的区域在具有双等位 PR 基因座的三个物种中显示出重组抑制和基因组退化的迹象。我们的观察结果支持了 MAT 基因座的重组抑制、基因组退化和等位基因多样性之间的联系,这与最近的数学建模和模拟一致。最后,我们证实 MAT 基因在无性感染周期中表达,我们提出这可能支持在感染和孢子形成过程中调节核的维持和配对。我们的研究为关键致病性 Puccinia 物种的 MAT 基因座的进化提供了新的见解。了解交配相容性可以帮助预测由有性生殖或体细胞重组产生的核对的可能组合,以及这些重要植物病原体的新毒力分离株的潜在进化。