Suppr超能文献

比较荟萃分析中用于量化研究间异质性的各种统计量估计值。

Comparisons of various estimates of the statistic for quantifying between-study heterogeneity in meta-analysis.

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, USA.

Department of Population and Public Health Sciences, Division of Biostatistics, University of Southern California, Los Angeles, CA, USA.

出版信息

Stat Methods Med Res. 2024 May;33(5):745-764. doi: 10.1177/09622802241231496. Epub 2024 Mar 19.

Abstract

Assessing heterogeneity between studies is a critical step in determining whether studies can be combined and whether the synthesized results are reliable. The statistic has been a popular measure for quantifying heterogeneity, but its usage has been challenged from various perspectives in recent years. In particular, it should not be considered an absolute measure of heterogeneity, and it could be subject to large uncertainties. As such, when using to interpret the extent of heterogeneity, it is essential to account for its interval estimate. Various point and interval estimators exist for . This article summarizes these estimators. In addition, we performed a simulation study under different scenarios to investigate preferable point and interval estimates of . We found that the Sidik-Jonkman method gave precise point estimates for when the between-study variance was large, while in other cases, the DerSimonian-Laird method was suggested to estimate . When the effect measure was the mean difference or the standardized mean difference, the -profile method, the Biggerstaff-Jackson method, or the Jackson method was suggested to calculate the interval estimate for due to reasonable interval length and more reliable coverage probabilities than various alternatives. For the same reason, the Kulinskaya-Dollinger method was recommended to calculate the interval estimate for when the effect measure was the log odds ratio.

摘要

评估研究之间的异质性是确定研究是否可以合并以及综合结果是否可靠的关键步骤。 统计量是一种用于量化异质性的常用方法,但近年来从不同角度对其使用提出了挑战。特别是,它不应该被视为异质性的绝对衡量标准,并且可能存在很大的不确定性。因此,在使用 来解释异质性的程度时,必须考虑其区间估计。 存在各种 的点估计和区间估计。本文总结了这些估计量。此外,我们在不同情况下进行了模拟研究,以研究 的首选点估计和区间估计。我们发现,当研究间方差较大时,Sidik-Jonkman 方法为 提供了精确的点估计,而在其他情况下,建议使用 DerSimonian-Laird 方法估计 。当效应度量为均数差值或标准化均数差值时,建议使用 -profile 方法、Biggerstaff-Jackson 方法或 Jackson 方法计算 的区间估计,因为它们的区间长度合理且置信概率更可靠,优于各种替代方法。出于同样的原因,当效应度量为对数优势比时,建议使用 Kulinskaya-Dollinger 方法计算 的区间估计。

相似文献

1
Comparisons of various estimates of the statistic for quantifying between-study heterogeneity in meta-analysis.
Stat Methods Med Res. 2024 May;33(5):745-764. doi: 10.1177/09622802241231496. Epub 2024 Mar 19.
2
Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
Res Synth Methods. 2020 May;11(3):426-442. doi: 10.1002/jrsm.1404. Epub 2020 Apr 13.
3
A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
Res Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6.
4
Estimation in meta-analyses of mean difference and standardized mean difference.
Stat Med. 2020 Jan 30;39(2):171-191. doi: 10.1002/sim.8422. Epub 2019 Nov 11.
6
Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
BMC Med Res Methodol. 2019 Jan 11;19(1):16. doi: 10.1186/s12874-018-0618-3.
7
On the Q statistic with constant weights for standardized mean difference.
Br J Math Stat Psychol. 2022 Nov;75(3):444-465. doi: 10.1111/bmsp.12263. Epub 2022 Jan 30.
8
Methods to estimate the between-study variance and its uncertainty in meta-analysis.
Res Synth Methods. 2016 Mar;7(1):55-79. doi: 10.1002/jrsm.1164. Epub 2015 Sep 2.
9
An empirical comparison of heterogeneity variance estimators in 12 894 meta-analyses.
Res Synth Methods. 2015 Jun;6(2):195-205. doi: 10.1002/jrsm.1140. Epub 2015 Jun 6.
10
Do statistical heterogeneity methods impact the results of meta- analyses? A meta epidemiological study.
PLoS One. 2024 Mar 19;19(3):e0298526. doi: 10.1371/journal.pone.0298526. eCollection 2024.

引用本文的文献

1
Efficacy and safety of Jintiange in the treatment of osteoporosis: a systematic review and meta-analysis.
Front Pharmacol. 2025 Jul 14;16:1592184. doi: 10.3389/fphar.2025.1592184. eCollection 2025.
3
Epidemiology and surveillance of West Nile virus in the Mediterranean Basin during 2010-2023: A systematic review.
Curr Res Parasitol Vector Borne Dis. 2025 Jun 2;7:100277. doi: 10.1016/j.crpvbd.2025.100277. eCollection 2025.
5
Efficacy and safety of Shenfu injection on bradyarrhythmia: A systematic review and meta-analysis.
Medicine (Baltimore). 2025 May 2;104(18):e41779. doi: 10.1097/MD.0000000000041779.
8
Dengue in patients with kidney transplant: a systematic review.
Infez Med. 2025 Mar 1;33(1):50-63. doi: 10.53854/liim-3301-5. eCollection 2025.
10

本文引用的文献

1
A penalization approach to random-effects meta-analysis.
Stat Med. 2022 Feb 10;41(3):500-516. doi: 10.1002/sim.9261. Epub 2021 Nov 18.
3
Evaluation of various estimators for standardized mean difference in meta-analysis.
Stat Med. 2021 Jan 30;40(2):403-426. doi: 10.1002/sim.8781. Epub 2020 Nov 12.
4
Controversy and Debate: Questionable utility of the relative risk in clinical research: Paper 1: A call for change to practice.
J Clin Epidemiol. 2022 Feb;142:271-279. doi: 10.1016/j.jclinepi.2020.08.019. Epub 2020 Nov 7.
5
The relations among three popular indices of risks.
Stat Med. 2019 Oct 15;38(23):4772-4787. doi: 10.1002/sim.8330. Epub 2019 Jul 23.
6
Comparison of four heterogeneity measures for meta-analysis.
J Eval Clin Pract. 2020 Feb;26(1):376-384. doi: 10.1111/jep.13159. Epub 2019 Jun 24.
7
Pitfalls of using the risk ratio in meta-analysis.
Res Synth Methods. 2019 Sep;10(3):398-419. doi: 10.1002/jrsm.1347. Epub 2019 Apr 11.
8
Using simulation studies to evaluate statistical methods.
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
9
Bias caused by sampling error in meta-analysis with small sample sizes.
PLoS One. 2018 Sep 13;13(9):e0204056. doi: 10.1371/journal.pone.0204056. eCollection 2018.
10
A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
Res Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验