Suppr超能文献

使用机器学习确定万古霉素给药中的稳态谷浓度范围

Determining steady-state trough range in vancomycin drug dosing using machine learning.

作者信息

Tootooni M Samie, Barreto Erin F, Wutthisirisart Phichet, Kashani Kianoush B, Pasupathy Kalyan S

机构信息

Department of Health Informatics and Data Science, Loyola University Chicago, Maywood, IL, United States of America.

Department of Pharmacy, Mayo Clinic, Rochester, MN, United States of America.

出版信息

J Crit Care. 2024 Aug;82:154784. doi: 10.1016/j.jcrc.2024.154784. Epub 2024 Mar 18.

Abstract

BACKGROUND

Vancomycin is a renally eliminated, nephrotoxic, glycopeptide antibiotic with a narrow therapeutic window, widely used in intensive care units (ICU). We aimed to predict the risk of inappropriate vancomycin trough levels and appropriate dosing for each ICU patient.

METHODS

Observed vancomycin trough levels were categorized into sub-therapeutic, therapeutic, and supra-therapeutic levels to train and compare different classification models. We included adult ICU patients (≥ 18 years) with at least one vancomycin concentration measurement during hospitalization at Mayo Clinic, Rochester, MN, from January 2007 to December 2017.

RESULT

The final cohort consisted of 5337 vancomycin courses. The XGBoost models outperformed other machine learning models with the AUC-ROC of 0.85 and 0.83, specificity of 53% and 47%, and sensitivity of 94% and 94% for sub- and supra-therapeutic categories, respectively. Kinetic estimated glomerular filtration rate and other creatinine-based measurements, vancomycin regimen (dose and interval), comorbidities, body mass index, age, sex, and blood pressure were among the most important variables in the models.

CONCLUSION

We developed models to assess the risk of sub- and supra-therapeutic vancomycin trough levels to improve the accuracy of drug dosing in critically ill patients.

摘要

背景

万古霉素是一种经肾脏排泄、具有肾毒性的糖肽类抗生素,治疗窗窄,广泛应用于重症监护病房(ICU)。我们旨在预测每位ICU患者万古霉素谷浓度不合适的风险以及合适的给药剂量。

方法

将观察到的万古霉素谷浓度分为亚治疗水平、治疗水平和超治疗水平,以训练和比较不同的分类模型。我们纳入了2007年1月至2017年12月在明尼苏达州罗切斯特市梅奥诊所住院期间至少进行过一次万古霉素浓度测量的成年ICU患者(≥18岁)。

结果

最终队列包括5337个万古霉素疗程。XGBoost模型在亚治疗和超治疗类别方面表现优于其他机器学习模型,其AUC-ROC分别为0.85和0.83,特异性分别为53%和47%,敏感性分别为94%和94%。动力学估计的肾小球滤过率和其他基于肌酐的测量值、万古霉素治疗方案(剂量和间隔)、合并症、体重指数、年龄、性别和血压是模型中最重要的变量。

结论

我们开发了模型来评估万古霉素谷浓度亚治疗和超治疗的风险,以提高危重症患者给药的准确性。

相似文献

1
Determining steady-state trough range in vancomycin drug dosing using machine learning.
J Crit Care. 2024 Aug;82:154784. doi: 10.1016/j.jcrc.2024.154784. Epub 2024 Mar 18.
2
Reducing Vancomycin Dosage in Children on ECMO with Renal Impairment.
Thorac Cardiovasc Surg. 2024 Jan;72(S 03):e30-e36. doi: 10.1055/s-0044-1793908. Epub 2024 Nov 21.
9
Evaluation of an optimized intermittent vancomycin dosing regimen in infants.
J Antimicrob Chemother. 2025 Jun 3;80(6):1635-1639. doi: 10.1093/jac/dkaf112.

引用本文的文献

3
Artificial intelligence in nephrology education: a multicenter survey of fellowship trainees at Mayo Clinic.
Front Nephrol. 2025 Jun 18;5:1607017. doi: 10.3389/fneph.2025.1607017. eCollection 2025.
4
PK/PD-Guided Strategies for Appropriate Antibiotic Use in the Era of Antimicrobial Resistance.
Antibiotics (Basel). 2025 Jan 14;14(1):92. doi: 10.3390/antibiotics14010092.
6
Can we use artificial intelligence to better treat acute kidney injury?
Intensive Care Med. 2025 Jan;51(1):160-162. doi: 10.1007/s00134-024-07743-7. Epub 2024 Dec 11.

本文引用的文献

1
Serum concentration of continuously administered vancomycin influences efficacy and safety in critically ill adults: a systematic review.
Int J Antimicrob Agents. 2023 Dec;62(6):107005. doi: 10.1016/j.ijantimicag.2023.107005. Epub 2023 Oct 13.
3
Continuous Vancomycin Infusion versus Intermittent Infusion in Critically Ill Patients.
Infect Drug Resist. 2022 Dec 28;15:7751-7760. doi: 10.2147/IDR.S395385. eCollection 2022.
4
A machine learning model that emulates experts' decision making in vancomycin initial dose planning.
J Pharmacol Sci. 2022 Apr;148(4):358-363. doi: 10.1016/j.jphs.2022.02.005. Epub 2022 Feb 20.
5
AI Models to Assist Vancomycin Dosage Titration.
Front Pharmacol. 2022 Feb 8;13:801928. doi: 10.3389/fphar.2022.801928. eCollection 2022.
6
New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race.
N Engl J Med. 2021 Nov 4;385(19):1737-1749. doi: 10.1056/NEJMoa2102953. Epub 2021 Sep 23.
7
Prediction of vancomycin dose on high-dimensional data using machine learning techniques.
Expert Rev Clin Pharmacol. 2021 Jun;14(6):761-771. doi: 10.1080/17512433.2021.1911642. Epub 2021 Apr 9.
9
A New Algorithm Optimized for Initial Dose Settings of Vancomycin Using Machine Learning.
Biol Pharm Bull. 2020;43(1):188-193. doi: 10.1248/bpb.b19-00729.
10
Creatinine: From physiology to clinical application.
Eur J Intern Med. 2020 Feb;72:9-14. doi: 10.1016/j.ejim.2019.10.025. Epub 2019 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验